Yapay Zekâ ve Covid-19

Yazarlar

Özet

Referanslar

Church A. Turing AM. On computable numbers, with an application to the Entscheidungs problcm. Proceedings of the London Mathematical Society, 2 s. vol. 42, pp …. 1937. Available: https://philpapers.org/rec/CHUTAM-2

Whitby B. The turing test: AI’s biggest blind alley?’. Machines and thought: The legacy of Alan Turing. 1996;1: 53–62.

McCarthy J, Minsky ML, Rochester N, Shannon CE. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AIMag. 2006;27: 12–12.

Goodfellow I Bengio Y Courville. Deep Learning. In: deeplearningbook [Internet]. [cited 21 Jan 2021]. Available: Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge MA, London, UK: The MIT Press; 2016; 96-161. Available at: www.deeplearningbook.org. Accessed Jan 21, 2021.

Mor-Yosef S, Samueloff A, Modan B, Navot D, Schenker JG. Ranking the risk factors for cesarean: logistic regression analysis of a nationwide study. Obstet Gynecol. 1990;75: 944–947.

Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18: 1527–1554.

Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542: 115–118.

Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016;316: 2402–2410.

Miller DD, Brown EW. Artificial Intelligence in Medical Practice: The Question to the Answer? Am J Med. 2018;131: 129–133.

Yang Z, Zeng Z, Wang K, Wong S-S, Liang W, Zanin M, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J Thorac Dis. 2020;12: 165–174.

Pirouz B, Shaffiee Haghshenas S. Investigating a serious challenge in the sustainable development process: analysis of confirmed cases of COVID-19 (new type of coronavirus) through a binary …. Sustain Sci Pract Policy. 2020. Available: https://www.mdpi.com/669292

Srinivasa Rao ASR, Vazquez JA. Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone-based survey when cities and towns are under quarantine. Infect Control Hosp Epidemiol. 2020;41: 826–830.

Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Rajendra Acharya U. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med. 2020;121: 103792.

Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, et al. Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology. 2020;296: E65–E71.

Jiang X, Coffee M, Bari A, Wang J, Jiang X, Huang J, et al. Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity. Computers, Materials & Continua. 2020;63: 537–551.

Liu F, Zhang Q, Huang C, Shi C, Wang L, Shi N, et al. CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients. Theranostics. 2020;10: 5613–5622.

Mei X, Lee H-C, Diao K-Y, Huang M, Lin B, Liu C, et al. Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nat Med. 2020;26: 1224–1228.

Stebbing J, Krishnan V, de Bono S, Ottaviani S, Casalini G, Richardson PJ, et al. Mechanism of baricitinib supports artificial intelligence-predicted testing in COVID-19 patients. EMBO Mol Med. 2020;12: e12697.

Sayfalar

427-432

Gelecek

27 Mart 2021

Lisans

Lisans