Mikrobiyota ve Covid-19
Özet
Referanslar
Lancet T. Emerging understandings of 2019-nCoV. Lancet (London, England). 2020; 395(10221), 311.
2021.20.01.21.https://covid19.who.int/.
Li F. Structure, function, and evolution of coronavirus spike proteins. Annual review of virology. 3, 237-261.
Drosten C, Günther S, Preiser W, Van Der Werf S, Brodt H, Becker S et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. New England journal of medicine.2003; 348(20), 1967-1976.
Gomersall C. D, Joynt G. Middle East respiratory syndrome: new disease, old lessons. The Lancet.2003 381(9885), 2229-2230.
Zhou P, Yang X.-L, Wang X.-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature.2020. 579, 270–273. 10.1038/s41586-020-2012).
Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe.2020. 27, 325–328.Doi: 10.1016/j.chom.2020.02.001
Lee Y. K, Mazmanian S. K.Has the microbiota played a critical role in the evolution of the adaptive immune system? Science.2010. 330,Doi:1768–1773. 10.1126/science.1195568
Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S.The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv.2020.Doi:10.1101/2020.01.31.929042-2
Wu F, Zhao S, Yu B, Chen Y.-M, Wang W, Song Z.-G, et al. A new coronavirus associated with human respiratory disease in China. Nature.2020. 579, 265–269. Doi:10.1038/s41586-020-2008-3).
Zhong N S, Zheng B, J Li, Y M, Poon L, L M,et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. The Lancet, 362(9393), 1353-1358.
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y,et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study.2020. The Lancet,395(10223), 507-513.
Guan W, J Ni, Z Y, Hu Y, Liang W, H Ou, et al.Clinical characteristics of coronavirus disease 2019 in China.2020. New England journal of medicine, 382(18), 1708-1720.
Moffatt M F, Cookson W O. The lung microbiome in health and disease. Clinical Medicine.2020;17(6), 525.
Şahin K. TÜBA-Mikrobiyota ve insan sağlığı sempozyumu raporu. TÜBA; 10 Nisan 2017
Dhar D, Mohanty A.Gut microbiota and Covid-19-possible link and implications. Virus Research,2020; 198018. Doi: 10.1016/j.virusres.2020.198018
Cao X, COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol.2020; 269–270. 10.1038/s41577-020-0308-3-
Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol.2020;11:827. 10.3389/fimmu.2020.00827
Round J. L, Lee S. M, Li J, Tran G, Jabri B, Chatila T. A, et al. The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2020; 332, 974–977. 10.1126/science.1206095-
Cebula A, Seweryn M, Rempala G. A, Pabla S. S, Mcindoe R. A, Denning T. L, et al. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature.2013; 497, 258–262. 10.1038/nature12079
Furusawa Y, Obata Y, Fukuda S, Endo T. A, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature.2013; 504, 446–450. 10.1038/nature12721
Hepworth M. R, Fung T. C, Masur S. H, Kelsen J. R, Mcconnell F. M, Dubrot J, et al. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science.2013; 348, 1031–1035. 10.1126/science.aaa4812
He Y, Wang Z, Li F, Shi Y. Public health might be endangered by possible prolonged discharge of SARS-CoV-2 in stool. J. Infect.2020; 80,e18–e19. 10.1016/j.jinf.2020.02.031
Ichinohe T, Pang I. K, Kumamoto Y, Peaper D. R, Ho J. H, Murray T. S, et al. Microbiota regulates immune defense against respiratory tract influenza a virus infection. Proc. Natl. Acad. Sci. U.S.A.2011.108,5354–5359.Doi: 10.1073/pnas.1019378108
Abt M. C, Osborne L. C, Monticelli L. A, Doering T. A, Alenghat T, Sonnenberg G. F, et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37,2012; 158–170. Doi: 10.1016/j.immuni.2012.04.011
Thackray L. B, Handley S. A, Gorman M. J, Poddar S, Bagadia, P, Briseño C. G, et al. Oral antibiotic treatment of mice exacerbates the disease severity of multiple flavivirus infections. Cell. Rep.2018; 22, 3440.e6–3453.e6. Doi: 10.1016/j.celrep.2018.03.001
Hooper L. V, Littman D. R, and Macpherson, A. J.Interactions between the microbiota and the immune system. Science 2012;336, 1268–1273. Doi: 10.1126/science.1223490
Atarashi K, Tanoue T, Oshima K, Suda W, and Honda K. Treg induction by a rationally selected mixture of clostridia strains from the human microbiota. Nature 2013;500, 232–236. Doi: 10.1038/nature12331
Trompette A, Gollwitzer E. S, Pattaroni C, Lopez-Mejia I. C, Riva, E, Pernot J, et al. Dietary fiber confers protection against flu by shaping Ly6c– patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity.2018; 48, 992–1005.e8. Doi: 10.1016/j.immuni.2018.04.022
Antunes K. H, Fachi J. L, De Paula R, Da Silva E. F, Pral L. P, Dos Santos A, et al. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat Commun.2019;10:3273.Doi: 10.1038/s41467-019-11152-6
Maeda N, Nakamura R, Hirose Y, Murosaki S, Yamamoto Y, Kase T, et al. Oral administration of heat-killed lactobacillus plantarum L-137 enhances protection against influenza virus infection by stimulation of type I interferon production in mice. Int. Immunopharmacol. 2009;9, 1122–1125. Doi: 10.1016/j.intimp.2009.04.015
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323, 1061–1069.Doi: 10.1001/jama.2020.1585
Deriu E, Boxx G. M, He X, Pan C, Benavidez S. D, Cen L, et al. Influenza virus affects intestinal microbiota and secondary salmonella infection in the gut through type I interferons. PLoS Pathog.2016; 12:e1005572.Doi: 10.1371/journal.ppat.1005572
Bartley J. M, Zhou X, Kuchel G. A, Weinstock G. M, and Haynes L.Impact of age, caloric restriction, and influenza infection on mouse gut microbiome: an exploratory study of the role of age-related microbiome changes on influenza responses. Front. Immunol.2017; 8:1164. doi: 10.3389/fimmu.2017.01164
Groves H. T, Cuthbertson L, James P, Moffatt M. F, Cox M. J, and Tregoning J. S.Respiratory disease following viral lung infection alters the murine gut microbiota. Front. Immunol.2018; 9:182. Doi: 10.3389/fimmu.2018.00182
Zhang F. Washed Microbiota Transplantation for Patients With 2019-nCoV Infection. 2020.https://clinicaltrials.gov/ct2/show/NCT04251767?cond=Coronavirus+AND+%22Coronavirus+Infections%22&cntry=CN&draw=3&rank=14 (accessed May 28, 2020)
Cheung K. S, Hung I. F, Chan P. P, Lung K. C, Tso E, Liu R, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the hong kong cohort and systematic review and meta-analysis. Gastroenterology.2020; 10.1053/j.gastro.2020.03.065. [Epub ahead of print]
Donnelly C. A, Ghani A. C, Leung G. M, Hedley A. J, Fraser C, Riley S, et al. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in hong kong. Lancet 2013;361, 1761–1766.Doi;10.1016/S0140-6736(03)13410-1).
Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, et al. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. BioRxiv.2020; 10.1101/2020.01.30.927806).
Guan W.-J, Ni Z.-Y, Hu Y, Liang W.-H, Ou C.-Q., He J.-X., et al.Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med.2020; 382, 1708–1720. 10.1056/NEJMoa2002032
Otter J. A, Donskey C, Yezli S, Douthwaite S, Goldenberg S. D, Weber D. J.Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J. Hosp. Infect.2016; 92, 235–250. 10.1016/j.jhin.2015.08.027
Lee S. H.The SARS epidemic in hong kong. J. Epidemiol. Commun. Health 2003; 57, 652–654. 10.1136/jech.57.9.652
Lingkong Z, Xuwei T, Wenhao Y, Jin W, Xin L, Zhisheng L.First case of neonate infected with novel coronavirus pneumonia in China. Chin. J. Pediatr.2020; 58:E009. 10.3760/cma.j.issn.0578-1310.2020.0009-).
Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med.2005; 11, 875–879. 10.1038/nm1267)
Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature . 2012; 487, 477–481. 10.1038/nature11228).
Zhao Y, Chen F, Wu W, Sun M, Bilotta A. J, Yao S, et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 2018; 11, 752–762. 10.1038/mi.2017.118)
Lievin-Le Moal V, Servin A. L. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin. Microbiol.2016;Rev. 19, 315–337. 10.1128/CMR.19.2.315-337.2006)
Harmer D, Gilbert M, Borman R, & Clark K. L. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS letters,2012; 532(1-2), 107-110
Chan K. H, Poon L. L, Cheng V. C. C, Guan, Y, Hung I. F. N, Kong, J. S. M. Detection of SARS coronavirus in patients with suspected SARS. Emerging infectious diseases. 2004; 10(2), 294.
Wu Y. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 2020;1253(20):20–21. Doi: 10.1016/S2468-1253(20)30083-2
Gill S. R, Pop M, DeBoy R. T, Eckburg P. B, Turnbaugh P. J, Samuel B. S, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006; 312(5778), 1355-1359
Villanueva-Millán M. J, Perez-Matute P, & Oteo J. A. Gut microbiota: a key player in health and disease. A review focused on obesity. Journal of physiology and biochemistry. 2015; 71(3), 509-525.
A.B. Hall, A.C. Tolonen, R.J. Xavier. Human genetic variation and teh gut microbiome in disease. Nat Rev. Genet., 18 (11) (2017), pp. 690-699, 10.1038/nrg.2017.63.
Bingula R, Filaire M, Radosevic-Robin N, Bey M, Berthon J. Y, Bernalier-Donadille, et al. Desired turbulence? Gut-lung axis, immunity, and lung cancer. Journal of oncology.2017
Zhang D, Li S, Wang N, Tan H. Y, Zhang Z, & Feng Y. The cross-talk between gut microbiota and lungs in common lung diseases. Frontiers in Microbiology. 2020;11
Keely S, Talley N.J, Hansbro P.M. Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol. 2012;5(1):7–18.Doi: 10.1038/mi.2011.55
Dumas A. The role of the lung microbiota and the gut–lung axis in respiratory infectious diseases. Cell. Microbiol. 2018 Doi: 10.1111/cmi.12966.)
Groves H.T. Respiratory viral infection alters the gut microbiota by inducing inappetence. mBio. 2020;11(1):1–17. Doi: 10.1128/mBio.03236-19)
Lake M.A. What we know so far: COVID-19 current clinical knowledge and research. Clin. Med. Lond. (Lond) 2020:124–127. Doi: 10.7861/clinmed.2019-coron
Dickson R.P, Arbor A. The microbiome and critical illness. Lancet Respir. Med. 2017;4(1):59–72. Doi: 10.1016/S2213-2600(15)00427-0.
Mosca A, Leclerc M, Hugot J.P. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? Front. Microbiol. 2016;7(March):1–12. Doi:10.3389/fmicb.2016.00455
Nagpal R. Gut microbiome and aging: physiological and mechanistic insights. Nutr. Healthy Aging. 2018;4(4):267–285. Doi:10.3233/NHA-17003
Shen Z, Xiao Y, Kang L, Ma W, Shi L, Zhang L, et al. Genomic diversity of SARS-CoV-2 in coronavirus disease 2019 patients. Clin. Infect. Dis. 2020; 9:ciaa203. 10.1093/cid/ciaa203
Molyneaux P. L, Mallia P, Cox M. J, Footitt J, Willis-Owen S. A, Homola D, et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2013; 188, 1224–1231. 10.1164/rccm.201302-0341OC-
Gu L, Deng H, Ren Z, Zhao Y, Yu S, Guo Y, et al. Dynamic changes in the microbiome and mucosal immune microenvironment of the lower respiratory tract by influenza virus infection. Front. Microbiol. 2019; 10:2491. 10.3389/fmicb.2019.02491
Meyer N. J, Calfee C. S. Novel translational approaches to the search for precision therapies for acute respiratory distress syndrome. Lancet Respir. Med. 2017; 5, 512–523. 10.1016/S2213-2600(17)30187-X-
Panzer A. R, Lynch S. V, Langelier C, Christie J. D, McCauley K, Nelson M, et al. Lung microbiota is related to smoking status and to development of acute respiratory distress syndrome in critically ill trauma patients. Am. J. Respir. Crit. Care Med. 2018;197, 621–631. 10.1164/rccm.201702-0441OC
Kyo M, Nishioka K, Nakaya T, Kida Y, Tanabe Y, Ohshimo S, et al. Unique patterns of lower respiratory tract microbiota are associated with inflammation and hospital mortality in acute respiratory distress syndrome. Respir. Res. 2019; 20:246. 10.1186/s12931-019-1203-y –
Dickson R. P, Schultz M. J, Van Der Poll T, Schouten L. R, Falkowski N. R, Luth J. E, et al. Lung microbiota predict clinical outcomes in critically III patients. Am. J. Respir. Crit. Care Med. 2020;01, 555–563. 10.1164/rccm.201907-1487OC).
Dickson R. P, Singer B. H, Newstead M. W, Falkowski N. R, Erb-Downward J. R, Standiford T. J, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol. 2016; 1:16113. 10.1038/nmicrobiol.2016.113
Trompette A. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014;20(2):159–166. doi: 10.1038/nm.3444
Anand S, Mande S.S. Diet, microbiota and gut-lung connection. Front. Microbiol. 2018;9(September) Doi: 10.3389/fmicb.2018.02147.)
Feleszko W. Probiotic-induced suppression of allergic sensitization and airway inflammation is associated with an increase of T regulatory-dependent mechanisms in a murine model of asthma. Clin. Exp. Allergy. 2007;37(4):498–505. Doi: 10.1111/j.1365-2222.2006.02629.x).
West C.E. Bugging allergy; role of pre-, pro- and synbiotics in allergy prevention. Allergol. Int. 2017:529–538. Doi: 10.1016/j.alit.2017.08.001
Dey JK, Dey SK. SARS-CoV-2 pandemic, COVID-19 case fatality rates and deaths per million population in India. J Bioinform Comput Syst Biol. 2020;2:110---
Sood U, Gupta V, Kumar R, Lal S, Fawcett D, Rattan S, Poinern GEJ, Lal R. Chicken gut microbiome and human health: past scenarios, current perspectives, and futuristic applications. Indian J Microbiol. 2020;60:2–11. Doi: 10.1007/s12088-019-00785.
Luthra-Guptasarma M, Guptasarma P. Inflammation begets hyper-inflammation in: diet-derived chronic inflammation promotes runaway acute inflammation resulting in cytokine storms. Res Gate. 2020;10.13140/RG.2.2.17723.44323)
Kedia S, Rampal R, Paul J, Ahuja V. Gut microbiome diversity in acute infective and chronic inflammatory gastrointestinal diseases in North India. J Gastroenterol. 2016;51:660–671. Doi: 10.1007/s00535-016-1193-
Mackowiak PA. Recycling Metchnikoff: probiotics, the intestinal microbiome and the quest for long life. Front Public Health. 2013;1:52. Doi: 10.3389/fpubh.2013.00052.
Narayanan S, Pitchumoni CS. Dietary fiber. In: Pitchumoni C, Dharmarajan T (eds) Geriatric gastroenterology. 2020;Springer, Cham, pp. 1–16. 10.1007/978-3-319-90761-1_27-1).
Senghor B, Sokhna C, Ruimy R, Lagier JC. Gut microbiota diversity according to dietary habits and geographical provenance. Hum Microbiome J. 2018;7:1–9. Doi: 10.1016/j.humic.2018.01.001 ).
De Filippo C, Di Paola M, Ramazzotti M, Albanese D, Pieraccini G, Banci E, et al. Diet, environments, and gut microbiota. A preliminary investigation in children living in rural and urban Burkina Faso and Italy. Front Microbiol. 2017;8:1979. Doi: 10.3389/fmicb.2017.01979.).
Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol. 2011;12:5–9. Doi: 10.1038/ni0111-5).
Mehta K, Jha SS. COVID-19: a nightmare for the Indian economy. UGC Care J.2020; https://doi.org/10.2139/ssrn.3612676
World Health Organization. Coronavirus disease (COVID-19) situation report.2020;—132, vol 31 – 5
Varghese GM, John R. COVID-19 in India: Moving from containment to mitigation. Indian J Med Res. 2020; 151:136–139. https://doi.org/10.4103/ijmr.IJMR_860_20.
Gupta N, Agrawal S, Ish P, Mishra S, Gaind R, Usha G, et al. Safdarjung Hospital COVID 2019 working group. Clinical and epidemiologic profile of the initial COVID-19 patients at a tertiary care centre in India. Monaldi Arch Chest Dis. 2020;90:1294
Den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2020; 54:2325–2340. https://doi.org/10.1194/jlr.R036012
Oh J, Lee J. K, Schwarz D, Ratcliffe H. L, Markuns J. F, & Hirschhorn L. R. National response to COVID-19 in the Republic of Korea and lessons learned for other countries. Health Systems & Reform. 2020; 6(1), e1753464.
Di Renzo L, Gualtieri P, Pivari F, Soldati L, Attinà A, Cinelli G, et al. Eating habits and lifestyle changes during COVID-19 lockdown: an Italian survey. J Transl Med,2020; 18:229. https://doi.org/10.1186/s12967-020-02399-5
Rishi P, Thakur K, Vij S, Rishi L, Singh A, Kaur I. P, et al. Diet, gut microbiota and COVID-19. Indian Journal of Microbiology,2020; 1-10.
World Health Organization (2020) Coronavirus disease (COVID-19) situation report—132, vol 31 – 5.
Kumar R, Sood U, Gupta V, Singh M, Scaria J, Lal R. Recent advancements in the development of modern probiotics for restoring human gut microbiome dysbiosis. Indian J Microbiol. 2020; 60:12–25. Doi: 10.1007/s12088-019-00808-y.
Kaur A, Chopra K, Kaur IP, Rishi P. Salmonella strain specificity determines post-typhoid CNS complications: intervention by Lactiplantibacillus plantarum at gut-brain axis. Front Microbiol. 2020; 11:1568. https://doi.org/10.3389/fmicb.2020.01568.