The Transformation Of Education: Learning And Teaching In The Age Of Artificial Intelligence
Özet
Referanslar
Akgün, S. & Greenhow, C. (2021). Artificial intelligence in education: addressing ethical challenges in k-12 settings. AI and Ethics, 2(3), 431-440. https://doi.org/10.1007/s43681-021-00096-7.
AlAli, R. & Wardat, Y. (2024). Opportunities and challenges of integrating generative artificial intelligence in education. International Journal of Religion, 5(7), 784-793. https://doi.org/10.61707/8y29gv34.
Almuqhim, S., & Berri, J. (2025). AI‐Driven Personalized Microlearning Framework for Enhanced E‐Learning. Computer Applications in Engineering Education, 33(3), e70040. https://doi.org/10.1002/cae.70040.
Amriza, R. N. S., Chou, T. & Ratnasari, W. (2025). Beyond the classroom: understanding the evolution of educational data mining with key route main path analysis. Computer Applications in Engineering Education, 33(2). https://doi.org/10.1002/cae.70010.
Aparicio-Gómez, O. Y., Aparicio-Gómez, C. A., & Von Feigenblatt, O. F. (2024). Tejiendo conexiones: la simbiosis transformadora entre aprendizaje e Inteligencia Artificial. Hachetetepé. Revista científica de Educación y Comunicación, (28), 1103-1103. https://doi.org/10.25267/hachetetepe.2024.i28.1103.
Baidya, M., & Das, P. (2024). Impact of Cobra Effect in Education. International Journal for Multidisciplinary Research, 6(3), 1 - 5. https://doi.org/10.36948/ijfmr.2024.v06i03.19802.
Bulathwela, S., Pérez‐Ortiz, M., Holloway, C., Cukurova, M., & Shawe‐Taylor, J. (2024). Artificial intelligence alone will not democratise education: on educational inequality, techno-solutionism and inclusive tools. Sustainability, 16(2), 781. https://doi.org/10.3390/su16020781.
Bull, S. (2016). Negotiated learner modelling to maintain today’s learner models. Research and Practice in Technology Enhanced Learning, 11(1). https://doi.org/10.1186/s41039-016-0035-3.
Chen, Y. & So, W. M. W. (2022). Stem integration in primary school. Research in Integrated STEM Education, 1(1), 60-88. https://doi.org/10.1163/27726673-bja00006.
Chou, C., Tseng, S., Wang, C., Chao, P., Chen, Z., Lai, K., … & Yu, L. (2018). Learning analytics on graduates’ academic records to reflect on a competency‐based curriculum. Computer Applications in Engineering Education, 26(6), 2168-2182. https://doi.org/10.1002/cae.22019.
Demartini, C., Sciascia, L., Bosso, A., & Manuri, F. (2024). Artificial intelligence bringing improvements to adaptive learning in education: a case study. Sustainability, 16(3), 1347. https://doi.org/10.3390/su16031347.
Fowler, F. J. (2013). Survey research methods. Sage publications.
Gligorea, I., Cioca, M., Oancea, R., Gorski, A., Gorski, H., & Tudorache, P. (2023). Adaptive learning using artificial intelligence in e-learning: a literature review. Education Sciences, 13(12), 1216. https://doi.org/10.3390/educsci13121216.
Goodwin, A. L., Smith, L., Souto‐Manning, M., Cheruvu, R., Tan, M. Y., Reed, R., … & Taveras, L. (2014). What should teacher educators know and be able to do? perspectives from practicing teacher educators. Journal of Teacher Education, 65(4), 284-302. https://doi.org/10.1177/0022487114535266.
Gulson, K. N., & Webb, P. T. (2017). Mapping an emergent field of ‘computational education policy’: Policy rationalities, prediction and data in the age of Artificial Intelligence. Research in Education, 98(1), 14-26. https://doi.org/10.1177/0034523717723385.
Guo, L., Wang, D., Gu, F., Li, Y., Wang, Y., & Zhou, R. (2021). Evolution and trends in intelligent tutoring systems research: a multidisciplinary and scientometric view. Asia Pacific Education Review, 22(3), 441-461. https://doi.org/10.1007/s12564-021-09697-7.
Hakami, E., & Hernández‐Leo, D. (2021). Investigating the well-being impacts of educational technologies supported by learning analytics: An application of the initial phase of IEEE P7010 recommended practice to a set of cases. Proceedings of the 11th International Learning Analytics and Knowledge Conference (LAK '21), 269–279. https://doi.org/10.1145/3448139.3448165.
Hardaker, G. & Glenn, L. (2025). Artificial intelligence for personalized learning: a systematic literature review. International Journal of Information and Learning Technology, 42(1), 1-14. https://doi.org/10.1108/ijilt-07-2024-0160.
Holmes, W., Iniesto, F., Anastopoulou, S., & Boticario, J. G. (2023). Stakeholder perspectives on the ethics of ai in distance-based higher education. The International Review of Research in Open and Distributed Learning, 24(2), 96-117. https://doi.org/10.19173/irrodl.v24i2.6089.
Hsieh, S. J., & Li, Q. (2018, June). Lessons Learned from an Intelligent Tutoring System for Computer Numerical Control Programming (CNC Tutor). In 2018 ASEE Annual Conference & Exposition. https://doi.org/10.18260/1-2--30762.
Ifenthaler, D. & Yau, J. (2020). Utilising learning analytics to support study success in higher education: a systematic review. Educational Technology Research and Development, 68(4), 1961-1990. https://doi.org/10.1007/s11423-020-09788-z.
Ioannou-Sougleridi, E., Kopsidas, S., Vavougios, G. D., Simos, C., Avramopoulos, A., & Kanapitsas, A. (2024). Revolutionizing learning management systems: architecture of an ai-based lms with instructor-driven personalized content generation. International Journal of Advanced Multidisciplinary Research and Studies, 4(4), 1222-1226. https://doi.org/10.62225/2583049x.2024.4.4.3169.
Karki, D., Karki, N., Dahal, R. K., & Bhattarai, G. (2023). Future of education in the era of artificial intelligence. GMMC Journal of Interdisciplinary Studies, 12(1), 54-63. https://gmmcjournal.edu.np/index.php/journal/article/view/75/42
Kim, Y. & Jeong, H. (2022). Learning fair prediction models with an imputed sensitive variable: empirical studies. Communications for Statistical Applications and Methods, 29(2), 251-261. https://doi.org/10.29220/csam.2022.29.2.251.
Komolafe, O., Mustofa, J., Daley, M., Walton, D. & Tawiah, A. (2025). Current applications and outcomes of ai-driven adaptive learning systems in physical rehabilitation science education: a scoping review protocol. Plos One, 20(6), e0325649. https://doi.org/10.1371/journal.pone.0325649.
Köbis, L. & Mehner, C. (2021). Ethical questions raised by ai-supported mentoring in higher education. Frontiers in Artificial Intelligence, 4, 1 - 9. https://doi.org/10.3389/frai.2021.624050.
Krügel, S., Ostermaier, A., & Uhl, M. (2022). Zombies in the loop? humans trust untrustworthy ai-advisors for ethical decisions. Philosophy & Technology, 35(1). https://doi.org/10.1007/s13347-022-00511-9.
Li, W. (2024). The influence of artificial intelligence on the education system. Lecture Notes in Education Psychology and Public Media, 65(1), 137-142. https://doi.org/10.54254/2753-7048/65/20240158.
Liu, Y., He, S., Chen, H., Qing, W., Su, H., & Deng, G. (2023). Investigation on response strategies for the impact of chatgpt technology application on college chinese language education. International Journal of Educational Innovation and Science, 4(1). https://doi.org/10.38007/ijeis.2023.040114.
Mary, D. M., & Joyce, M. M. (2024). AI and education: Impact of AI on learning outcomes in higher education. International Journal of Scientific Research in Engineering and Management, 08(08), 1-16. https://doi.org/10.55041/ijsrem37145.
Paglialunga, A. & Melogno, S. (2025). The effectiveness of artificial intelligence-based interventions for students with learning disabilities: a systematic review. Brain Sciences, 15(8), 806. https://doi.org/10.3390/brainsci15080806.
Paolucci, C., Vancini, S., Bex, R., Cavanaugh, T., Salama, C., & Araujo, Z. (2024). A review of learning analytics opportunities and challenges for k-12 education. Heliyon, 10(4), e25767. https://doi.org/10.1016/j.heliyon.2024.e25767.
Prinsloo, P., & Slade, S. (2016). Here be dragons: Mapping student responsibility in learning analytics. C. Beaumont, L. Moscrop, S. Martin, & S. Shaikh (Eds.), In Developing effective educational experiences through learning analytics (pp. 170-188). IGI Global Scientific Publishing.
Ray, S. & Ray, D. (2024). Artificial intelligence in education: navigating the nexus of innovation and ethics for future learning landscapes. International Journal of Research - Granthaalayah, 11(12). https://doi.org/10.29121/granthaalayah.v11.i12.2023.5464.
Ren, S. (2024). Optimization of english classroom interaction models incorporating machine learning. Journal of Electrical Systems, 20(6), 1669-1681. https://doi.org/10.52783/jes.3086.
Roganović, J., Radenković, M., & Miličić, B. (2023). Responsible use of artificial intelligence in dentistry: survey on dentists’ and final-year undergraduates’ perspectives. Healthcare, 11(10), 1480. https://doi.org/10.3390/healthcare11101480.
Romero, C. & Krichesky, G. J. (2017). Interactive leadership in turbulent school climates. an exploratory study of high school principals from the city of buenos aires. Educational Management Administration & Leadership, 46(2), 339-354. https://doi.org/10.1177/1741143217720456.
Ryan, M. & Stahl, B. C. (2020). Artificial intelligence ethics guidelines for developers and users: clarifying their content and normative implications. Journal of Information, Communication and Ethics in Society, 19(1), 61-86. https://doi.org/10.1108/jices-12-2019-0138.
Slavov, V., García-Vidal, R., Yotovska, K., & Asenova, A. (2023). Attitudes Of Pre-Service Biology Teachers Towards The Application Of Chatgpt In The University Learning Process. In ICERI2023 Proceedings (pp. 1612-1621). IATED. https://doi.org/10.21125/iceri.2023.0490.
Stair, K. S., Warner, W. J., Culbertson, A. L., & Blanchard, L. (2016). A qualitative analysis of teachers’ perceptions of common core state standards in agricultural education. Journal of Agricultural Education, 57(2), 93-105. https://doi.org/10.5032/jae.2016.02093.
Talan, T., & Demirbilek, M. (2023). Bibliometric analysis of research on learning analytics based on web of science database. Informatics in Education, 22(1), 161-181. https://doi.org/10.15388/infedu.2023.02.
Verma, A., Dhupam, S. R., Bansod, S., & Rahul, R. (2024). Application of AI in Education. A Bibliometric Analysis. International Journal of Religion, 5(8), 198 – 207. https://doi.org/10.61707/g51v1a23.
Waly, M. I. (2024). Artificial intelligence and scientific research. Sustainability Education Globe, 2(1), 1-14. https://doi.org/10.21608/seg.2024.269596.1001.
Wei, L., Li, Y., Wang, W., & Zhu, Y. (2024). Enhancing knowledge-concept recommendations with heterogeneous graph-contrastive learning. Mathematics, 12(15), 2324. https://doi.org/10.3390/math12152324.
Wu, J., Tlili, A., Salha, S., Mizza, D., Saqr, M., López-Pernas, S., & Huang, R. (2025). Unlocking the potential of artificial intelligence in improving learning achievement in blended learning: a meta-analysis. Frontiers in Psychology, 16, 1691414. https://doi.org/10.3389/fpsyg.2025.1691414.
Yan, Y., Liu, H., & Chau, T. (2025). A systematic review of ai ethics in education. Journal of Global Information Management, 33(1), 1-50. https://doi.org/10.4018/jgim.386381.
Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., ... & Li, Y. (2021). A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. Complexity, 2021(1), 8812542. https://doi.org/10.1155/2021/8812542.
Zhang, S., Wang, X., Ma, Y., & Wang, D. (2023). An adaptive learning method based on knowledge graph. Frontiers in Educational Research, 6(6), 112 - 115. https://doi.org/10.25236/fer.2023.060624
Zhao, J., Juithong, S., & Nilnopkoon, P. (2024). Effecting an adaptive learning system on academic achievement as regulations for measuring pharmacist qualifications to licensure of pharmaceutical management students. IJSASR, 4(3), 573-582. https://doi.org/10.60027/ijsasr.2024.4357.