İneklerde Mastitisle Mücadelede Bir Yöntem: Meme Başı Kaplayıcıları ve Tıkaçları
Özet
Referanslar
Meaney WJ. Effect of a dry period teat seal on bovine udder infection. Israel Journal of Agricultural Research. 1977;16:293-299.
Notcovich S, Williamson NB, Flint S, Yapura J, Schukken YH, Heuer C. Effect of bismuth subnitrate on in vitro growth of major mastitis pathogens. Journal of Dairy Science. 2020;103(8):7249-7259.
Codex Alimentarius. Codex committee on residues of veterinary drugs in foods. Vol. RVDF/23 CRD/22. 21 October 2016. p. 1-6.
Küplülü Ş, Vural MR, Büyük Ruminantlarda Meme Sağlığı Kontrol Programları, In: Evcil Hayvanlarda Meme Hastalıkları, Ed; Kaymaz M, Fındık M, Rişvanlı A, Köker A, First edition, pp; Medipres, Ankara, Turkey, 2016, 261-294.
Mütze K, Wolter W, Failing K, Kloppert B, Bernhardt H, Zschöck M. The effect of dry cow antibiotic with and without an internal teat sealant on udder health during the first 100 d of lactation: a field study with matched pairs. Journal of Dairy Reserach. 2012;79:477-484.
Dingwell RT, Leslie KE, Schukken YH, Sargeant JM, Timms LL, Duffield TF, et al. Association of cow and quarter-level factors at drying-off with new intramammary infections during the dry period. Preventive Veterinary Medicine. 2004;63:75-89.
Woolford MW, Williamson JH, Day AM, Copeman PJ. The prophylactic effect of a teat sealer on bovine mastitis during the dry period and the following lactation. New Zealand Veterinary Journal. 1998;46:12-19. doi:10.1080/00480169.1998.36044
Serna-Cock L, Pabón-Rodríguez OV. Development of a teat bio-sealant and evaluation of its technological and functional properties. Probiotics and Antimicrobial Proteins. 2016;8(2):111-119.
Phillips RH, Whitehead MW, Lacey S, Champion M, Thompson RPH, Powell JJ. Solubility, absorption, and anti–Helicobacter pylori activity of bismuth subnitrate and colloidal bismuth subcitrate: in vitro data do not predict in vivo efficacy. Helicobacter. 2000;5:176-182. doi:10.1046/j.1523-5378.2000.00028.x
Vega-Jiménez AL, Berea-Montes E, Almaguer-Flores A. Susceptibility of E. coli, P. aeruginosa, S. aureus and S. epidermidis to different bismuth compounds. MRS Proceedings. 2012;1487. doi:10.1557/opl.2012.1525
Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine (Lond). 2007;3:95-101. doi:10.1016/j.nano.2006.12.001
Pasquet J, Chevalier Y, Pelletier J, Couval E, Bouvier D, Bolzinger MA. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014;457:263-274. doi:10.1016/j.colsurfa.2014.05.057
Folsom JP, Baker B, Stewart PS. In vitro efficacy of bismuth thiols against biofilms formed by bacteria isolated from human chronic wounds. Journal of Applied Microbiology. 2011;111:989-996. doi:10.1111/j.1365-2672.2011.05110.x
Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Garza-Enriquez M, De la Garza-Ramos MA, et al. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. International Journal of Nanomedicine. 2012;7:2109-2113. doi:10.2147/IJN.S29854
Edinger D, Tenhagen BA, Kalbe P, Klunder G, Baumgartner B, Heuwieser W. Effect of teat dipping with a germicide barrier teat dip in late gestation on intramammary infection and clinical mastitis during the first 5 days post-partum in primiparous cows. Journal of Veterinary Medicine. 2000;47:463-468.
Timms L. Field trial evaluations of a novel persistent barrier teat dip for preventing mastitis during the dry period and as a potential substitute for dry cow antibiotic therapy. National Mastitis Council Annual Meeting Proceedings. Reno, Nevada; 2001.
Godden S, Leslie KE, Dingwell R, Sanford CJ. Mastitis control and the dry period: What have we learned. In: NMC Regional Meeting Proceedings. Charlottetown, Prince Edward Island; 2006.
Whist AC, Osteras O, Sølverød L. Clinical mastitis in Norwegian herds after a combined selective dry-cow therapy and teat-dipping trial. Journal of Dairy Science. 2006;89:4649-4659.
Lim GH, Kelton DF, Leslie KE, Timms LL, Church C, Dingwell RT. Herd management factors that affect duration and variation of adherence of an external teat sealant. Journal of Dairy Science. 2007;90:1301-1309.
Lim GH, Leslie KE, Kelton DF, Duffield TF, Timms LL, Dingwell RT. Adherence and efficacy of an external teat sealant to prevent new intramammary infections in the dry period. Journal of Dairy Science. 2007;90:1289-1300.
Berry EA, Hillerton JE. The effect of an intramammary teat seal on new intramammary infections. Journal of Dairy Science. 2002;85:2512-2520.
Bates AJ, Chambers G, Laven RA. Comparison of cephalonium alone and in combination with an internal teat sealant for dry cow therapy in seasonally calving dairy cows. New Zealand Veterinary Journal. 2015;29:1-6.
Sanford CJ, Keefe GP, Dohoo IR, Leslie KE, Dingwell RT, DesCoteaux L, et al. Efficacy of using an internal teat sealer to prevent new intramammary infections in nonlactating dairy cattle. Journal of the American Veterinary Medical Association. 2006;228:1565-1573.
Berry EA, Hillerton JE. The effect of selective dry cow treatment on new intramammary infections Journal of Dairy Science. 2002;85:112-121.
Huxley JN, Greent MJ, Green LE, Bradley AJ. Evaluation of the efficacy of an internal teat sealer during the dry period. Journal of Dairy Science. 2002;85:551-561.
Krömker V, Reinecke F, Paduch JH, Grabowski N. Bovine Streptococcus uberis intramammary infections and mastitis. Journal of Clinical Microbiology. 2014;3:157.
Bansal BK, Dhaliwal PS, Bajwa NS, Randhawa SS. Role of selective dry cow therapy in prevention of mastitis in dairy herds with high disease prevalence. In: Hogeveen H, editor. Mastitis in Dairy Production: Current Knowledge and Future Solutions. Wageningen (Netherlands): Wageningen Academic Publishers; 2007. p. 234-278.
Halasa T, Osteras O, Hogeveen H, Van Werven T, Nielen M. Meta-analysis of dry cow management for dairy cattle part 1 protection against new intramammary infections. Journal of Dairy Science. 2009;92:3134-3149.
Runciman DJ, Malmo J, Deighton M. The use of an internal teat sealant in combination with cloxacillin dry cow therapy for the prevention of clinical and subclinical mastitis in seasonal calving dairy cows. Journal of Dairy Science. 2010;93:4582-4591.
Kabera F, Dufour S, Keefe G, Roy JP. An observational cohort study on persistency of internal teat sealant residues in milk after calving in dairy cows. Journal of Dairy Science. 2018;101(7):6399-6412.
Bradley AJ, Breen JE, Payne B, Williams P, Green MJ. The use of a cephalonium containing dry cow therapy and an internal teat sealant, both alone and in combination. Journal of Dairy Science. 2010;93:1566-1577.
Bhutto AL, Murray RD, Woldehiwet Z. The effect of dry cow therapy and internal teat-sealant on intra-mammary infections during subsequent lactation. Research in Veterinary Science. 2011;90:316-320.
Keefe G. Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis. Veterinary Clinics of North America: Food Animal Practice. 2012;28:203-16.
Castro SI, Berthiaume R, Robichaud A, Lacasse P. Effects of iodine intake and teat-dipping practices on milk iodine concentrations in dairy cows. Journal of Dairy Science. 2012;95:213-220.
De Vliegher S, Fox LK, Piepers S, McDougall S, Barkema HW. Invited review: mastitis in dairy heifers: nature of the disease, potential impact, prevention, and control. Journal of Dairy Science. 2012;95:1025-1040.
Angelopoulou A, Warda AK, Hill C, Ross RP. Non-antibiotic microbial solutions for bovine mastitis–live biotherapeutics, bacteriophage, and phage lysins. Critical Reviews in Microbiology. 2019;45(5-6):564-580.
Schoster A, Kokotovic B, Permin A, Pedersen PD, Bello FD, Guardabassi L. In vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains. Anaerobe. 2013;20:36-41.
Sikorska H, Smoragiewicz W. Role of probiotics in the prevention and treatment of meticillin-resistant Staphylococcus aureus infections. International Journal of Antimicrobial Agents. 2013;42:475-481.
Krutmann J. Pre- and probiotics for human skin. Clinics in Plastic Surgery. 2012;39:59-64.
Serna-Cock L, Pabón-Rodríguez OV, Giraldo-Gómez GI. Adhesion capacity of Weissella cibaria to bovine mammary tissue and the effect of bio-sealant topical application on physicochemical properties of milk. Probiotics and Antimicrobial Proteins. 2019;11(4):1293-1299.
Ryan MP, Flynn J, Hill C, Ross RP, Meaney WJ. The natural food grade inhibitor, lacticin 3147, reduced the incidence of mastitis after experimental challenge with Streptococcus dysgalactiae in nonlactating dairy cows. Journal of Dairy Science. 1999;82(10):2108-2114.
Twomey DP, Wheelock AI, Flynn J, Meaney WJ, Hill C, Ross RP. Protection against Staphylococcus aureus mastitis in dairy cows using a bismuth-based teat seal containing the bacteriocin, lacticin 3147. Journal of Dairy Science. 2000;83(9):1981-1988.
Klostermann K, Crispie F, Flynn J, Meaney WJ, Ross RP, Hill C. Efficacy of a teat dip containing the bacteriocin lacticin 3147 to eliminate gram-positive pathogens associated with bovine mastitis. Journal of Dairy Research. 2010;77(2):231-238.
Pieterse R, Todorov SD, Leon M. Mode of action and in vitro susceptibility of mastitis pathogens to macedocin ST91KM and preparation of a teat seal containing the bacteriocin. Brazilian Journal of Microbiology. 2010;41(1):133-145.
Porter J, Anderson J, Carter L, Donjacour E, Paros M. In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. Journal of Dairy Science. 2016;99(3):2053-2062. doi:10.3168/jds.2015-9748
Mathew M, Mathew D, Theresa M, CS, EK R. Development of zinc oxide nanoparticle and lemongrass essential oil incorporated nanoformulation-based external teat sealant to prevent mastitis in dairy cows. BioNanoScience. 2025;15(1):204.
Durán N, Marcato PD, Conti RD, Alves OL, Costa TM, Brocchi M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. Journal of the Brazilian Chemical Society. 2010;21:949-959.
Baipaywad P, Mektrirat R, Manaspon C. Preparation and characterization of gallic acid-loaded PLGA hydrogel as teat sealant for preventing mastitis in dry cows. Journal of Applied Pharmaceutical Science. 2022;12(11):30-37. doi:10.7324/JAPS.2022.121104
Lanctôt S, Fustier P, Taherian AR, Bisakowski B, Zhao X, Lacasse P. Effect of intramammary infusion of chitosan hydrogels at drying-off on bovine mammary gland involution. Journal of Dairy Science. 2017;100(3):2269-2281.
Lay AM, Kolpin KM, Sommer DA, Rankin SA. Hot Topic: Black Spot Defect in Cheddar Cheese Linked to Intramammary Teat Sealant. Journal of Dairy Science. 2007;90:4938-4941. http://doi. org/10.3168/jds.2007-0385.
Buckley MP, Bayne J, Tomazi T, Miller BE, Silva GS, Gorden PJ. Evaluation of internal teat sealant persistence in the mammary gland during the dry period. Bovine Practitioner. 2023 57(2):51-59.
McCubbin KD, de Jong E, Brummelhuis CM, Bodaneze J, Biesheuvel M, Kelton DF, Barkema HW. Antimicrobial and teat sealant use and selection criteria at dry-off on Canadian dairy farms. Journal of Dairy Science. 2023;106(10):7104-7116. https://doi.org/10.3168/jds.2022-23083
Larsen LR, Baker PH, Enger KM, Moraes LE, Adkins PRF, Pempek JA, Enger, BD. Administration of internal teat sealant in primigravid dairy heifers at different times of gestation to prevent intramammary infections at calving. Journal of Dairy Science, 2021;104(12):12773-12784. https://doi.org/10.3168/jds.2021-20819
ElAshmawy WR, Okello E, Williams DR, Anderson RJ, Karle B, Lehenbauer TW, Aly SS. Effectiveness of ıntramammary antibiotics, ınternal teat sealants, or both at dry-off in dairy cows: Milk production and somatic cell count outcomes. Veterinary Sciences. 2022; 9(10):559. https://doi.org/10.3390/vetsci9100559