Deney Hayvanları Laboratuvarlarında Yangın Yükünün Belirlenmesi ve Risk Zonlarının Oluşturulması
Özet
Referanslar
Yung, D. (2008). Principles of fire risk assessment in buildings. John Wiley & Sons.
Hurley, M. J., Gottuk, D. T., Hall, J. R., Harada, K., Kuligowski, E. D., Puchovsky, M., Torero, J. L., Watts, J. M., & Wieczorek, C. J. (2021). SFPE handbook of fire protection engineering (5th ed.). Springer. https://doi.org/10.1007/978-1-4939-2565-0
Yemelyanenko, S., Ivanusa, A., & Kuzyk, A. (2020). Fire risks of public buildings.
CFPA Europe. (2012). Fire safety in laboratories (CFPA-E Guideline No. 28:2012 F). CFPA Europe.
National Research Council. (2011). Guide for the care and use of laboratory animals (8th ed.). National Academies Press. https://doi.org/10.17226/12910
Babrauskas, V. (2016). Heat release rates. In M. J. Hurley et al. (Eds.), SFPE handbook of fire protection engineering (5th ed., pp. 799–904). Springer. https://doi.org/10.1007/978-1-4939-2565-0_21
Khorasani, N. E., Garlock, M., & Gardoni, P. (2014). Fire load: Survey data, recent standards, and probabilistic models for office buildings. Engineering Structures, 58, 152–165. https://doi.org/10.1016/j.engstruct.2013.07.042
Jadon, S., & Kumar, S. (2025). Fire load assessment in office buildings: A comparison of survey results. Fire Technology, 61, 3137–3163. https://doi.org/10.1007/s10694-025-01547-0
Mi, H., Liu, Y., Wang, W., & Xiao, G. (2020). An integrated method for fire risk assessment in residential buildings. Mathematical Problems in Engineering, 2020, Article 9392467. https://doi.org/10.1155/2020/9392467
Tang, F., & Xie, H. (2020). Fire risk assessment based on multi-criteria decision-making approaches: A review. Fire Safety Journal, 113, 102966.
https://doi.org/10.1016/j.firesaf.2020.102966
Yuan, Y., Li, J., & Wang, Z. (2022). Spatial assessment of fire risk based on fire load characteristics in complex buildings. Safety Science, 150, 105703.
https://doi.org/10.1016/j.ssci.2022.105703
Van Weyenberge, B., Deckers, X., Caspeele, R., & Merci, B. (2019). Development of an integrated risk assessment method to quantify the life safety risk in buildings in case of fire. Fire Technology, 55, 1211–1242. https://doi.org/10.1007/s10694-018-0785-9
Zhou, Y., Chen, L., & Zhang, Y. (2023). Fire risk zoning in complex facilities using fire load–based indicators. International Journal of Disaster Risk Reduction, 85, 103502. https://doi.org/10.1016/j.ijdrr.2023.103502
Hassanain, M. A., Al-Harogi, M., & Ibrahim, A. M. (2022). Fire safety risk assessment of workplace facilities: A case study. Frontiers in Built Environment, 8, Article 861662. https://doi.org/10.3389/fbuil.2022.861662
Ahn, S., Won, J., Lee, J., & Choi, C. (2024). Comprehensive building fire risk prediction using machine learning and stacking ensemble methods. Fire, 7(10), 336. https://doi.org/10.3390/fire7100336
Liu, J., & Chow, W. K. (2014). Determination of fire load and heat release rate for high-rise residential buildings. Procedia Engineering, 71, 606–615. https://doi.org/10.1016/j.proeng.2014.10.460
McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., & Overholt, K. (2013). Fire dynamics simulator technical reference guide: Volume 1. Mathematical model (NIST Special Publication 1018). National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.1018
Bošković, G., Todorović, M., Ubavin, D., Stepanov, B., Mihajlović, V., Perović, M., & Čepić, Z. (2024). A new method for the determination of fire risk zones in high-bay warehouses. Fire, 7(4), 149. https://doi.org/10.3390/fire7040149
North, M. P., Bisbing, S. M., Hankins, D. L., Hessburg, P. F., Hurteau, M. D., Kobziar, L. N., & Stevens-Rumann, C. S. (2024). Strategic fire zones are essential to wildfire risk reduction in the western United States. Fire Ecology, 20(1), 50. https://doi.org/10.1186/s42408-024-00220-9
Türkiye İş Sağlığı ve Güvenliği Derneği. (2025). Yangın yükü ve yangın risk değerlendirme esasları. https://www.tibder.org.tr