Kesme Endüstrisi İçin Yüksek Basınçlı Saf Su Jet Nozulu Tasarımının Sayısal Analizi

Özet

Günümüzde metalurji şirketleri her yıl tonlarca çelik malzemeyi keserek şekillendirmektedir. Kesim kalitesine olan talep sürekli arttığından yeni işleme teknolojileri geliştirilmektedir. Bu alandaki en gelişmiş teknolojiler arasında lazer ve metal su jeti kesimi (su jetleri) yer almaktadır. Su jetlerinin önemli avantajlarından biri, malzemeyi ısıdan etkilenen bir bölge oluşturmadan kesebilmesi sayesinde yapısını bozmamasıdır. Dahası bu teknoloji yalnızca metalleri değil, gıda ürünleri gibi hassas malzemeleri de hijyen koşullarında kesebilmektedir. Ancak tüm bu avantajlara rağmen su jeti kesimindeki temel sorun genellikle düşük verimliliktir.
Bu çalışmanın amacı, nozul çapı parametresine bağlı olarak kesme prosesini optimize etmektir. Bu amaçla aşındırıcı su, saf su olarak belirlenmiştir. Sıvı akışını görselleştirmek için Hesaplamalı Akışkanlar Dinamiği (HAD) kullanılmıştır. Kullanılan basınç ve nozul çapları sırasıyla, 100, 200 ve 300 MPa ve 0,15, 0,2, 0,25 ve 0,3 mm'dir. Analizden sonra, su jetinin basıncı arttıkça su hızının da arttığı bulgusuna ulaşılmış, nozul deliğinin çapı arttıkça su püskürtme konisi açısını artmıştır. En optimum çalışma şartlarının 200 MPa basınç ve 0,15 mm nozul çapında olduğu belirlenmiştir.

Today, metallurgical companies cut and shape tons of steel every year. As the demand for cutting quality constantly increases, new processing technologies are being developed. Among the most advanced technologies in this field are laser and metal waterjet cutting (water jets). One of the key advantages of waterjets is that they cut the material without creating a heat-affected zone, preserving its structure. Furthermore, this technology can cut not only metals but also delicate materials such as food products under hygienic conditions. However, despite all these advantages, the main problem with waterjet cutting is often low productivity.
The aim of this study is to optimize the cutting process based on the nozzle diameter parameter. For this purpose, the abrasive water was determined to be pure water. Computational Fluid Dynamics (CFD) was used to visualize the fluid flow. The pressures and nozzle diameters used were 100, 200, and 300 MPa, and 0.15, 0.2, 0.25, and 0.3 mm, respectively. Analysis revealed that water velocity increases with increasing water jet pressure, and that the spray cone angle increases with increasing nozzle orifice diameter. The optimum operating conditions were determined to be 200 MPa pressure and 0.15 mm nozzle diameter.

Referanslar

Ansys. Fluent 12.0 User’s Guide. 2009. Available from: ftp://115.88.84.229/disk1/Program_install_files/FLUENT_V12_Manual/flug.pdf [Accessed: 01 May 2019].

Ansys. Meshing User’s Guide, Release 13.0. 2010. Available from: http://www.fluid.tuwien.ac.at/322057?action=AttachFile&do=get&target=flu_ug.pdf [Accessed: 01 May 2019].

Ansys. Fluent Meshing User's Guide 17. 2016. Available from: http://dl.racfd.com/ANSYS-Fluent-Tutorial-Guide_r170.pdf [Accessed: 01 May 2019].

Budiyanto MA, Novri J, Alhamid MI, Ardiyansyah. Analysis of convergent and divergent–convergent nozzle of waterjet propulsion by CFD simulation. AIP Conference Proceedings. 2019;2062:020066.

Birtu C, Avramescu V. Abrasive water jet cutting – technique, equipment, performances. Nonconventional Technology Review. 2012;40–46.

Chernykh AA, Sharapov AI, Arzamastsev AG, Shatskikh YV. Investigation of water–air flows in nozzles. Journal of Physics: Conference Series. 2021;2088:012006.

Khan A, Aabid A, Khan SA. CFD analysis of convergent–divergent nozzle flow and base pressure control using micro-JETS. International Journal of Engineering & Technology. 2018;7(3.29):232–235.

McGeough JA. Cutting of food products by ice-particles in a water-jet. CIRP Conference on Electro Physical and Chemical Machining (ISEM XVIII). 2016;863–865.

Mohamad WNF, Kasim MS, Norazlina MY, Hafiz R, Izamshah M, Mohamed SB. Results Engineering. 2020;6: (sayfa numarası verilmemiş).

Pătîrnac I, Ripeanu RG, Laudacescu E. Abrasive flow modelling through active parts water jet machine using CFD simulation. Materials Science and Engineering. 2020;724:012001.

Pathan KA, Ashfaq S, Dabeer PS, Khan SA. Analysis of parameters affecting thrust and base pressure in suddenly expanded flow from nozzle. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 2019;64(1–18).

Radovanovic M. Multi-objective optimization of abrasive water jet cutting using MOGA. Conference on Material Forming ESAFORM. 2020;781–787.

Song G, Zheng H, Wang Y, Zheng Y, Zhou Y, Yao B. Finite element analysis of nozzle selection based on high pressure water jet technology. Earth and Environmental Science. 2019;267:042053.

Stoxreitera T, Martinb A, Tezac D, Gallera R. Hard rock cutting with high pressure jets in various ambient pressure regimes. International Journal of Rock Mechanics and Mining Sciences. 2018;108:179–188.

Urazmetova O, Cadet M, Teutschb R, Antonyuk S. Investigation of the flow phenomena in high-pressure water jet nozzles. Chemical Engineering Research and Design. 2021;165:320–332.

Wang L, Wang G, Mao L, Fu Q, Zhong L. Experimental research on the breaking effect of natural gas hydrate sediment for water jet and engineering applications. Journal of Petroleum Science and Engineering. 2019;184:106553.

Yaacob NSM, Khalid A, Jaat N, Andsaler AR, Azizul MA, Sapit A. Simulation and modelling of spray characteristics, spray penetration length and injection pressure of biodiesel. AIP Conference Proceedings. 2024;2998:030003.

Yayınlanan

13 Şubat 2026

Lisans

Lisans