Sağlıklı Yaşam ve Yaşlı Sağlığı: Teknolojik Gelişmelerin Derinlemesine İncelenmesi

Özet

Referanslar

Bloom, D. E., Chatterji, S., Kowal, P., Lloyd-Sherlock, P., McKee, M., Rechel, B., ... & Smith, J. P. (2015).Macroeconomic implications of population ageing and selected policy responses. The Lancet, 385(9968), 649–657.

https://doi.org/10.1016/S0140-6736(14)61464-1

Calabrò, R. S., Cacciola, A., Bertè, F., Manuli, A., Leo, A., Bramanti, A., & Bramanti, P. (2018). Robotic gait rehabilitation and functional recovery in patients with spinal cord injury: A systematic review. Frontiers in Human Neuroscience, 12, 422.

Chan, M., Estève, D., Escriba, C., & Campo, E. (2008). A review of smart homes—Present state and future challenges. Computer Methods and Programs in Biomedicine, 91(1), 55–81.

Chen, Y., et al. (2024). Predicting Parkinson’s disease from gait patterns using deep learning. npj Digital Medicine, 7(1), 15.

Chen, Z., Wang, Y., & Huang, X. (2022). Fall detection in older adults using wearable sensors: A real-world evaluation. Sensors, 22(3), 678–690.

Crawford, A., & Serhal, E. (2020). Digital health equity and COVID-19: The innovation curve cannot reinforce the social gradient of health. Journal of Medical Internet Research, 22(6), e19361.

Crimmins, E. M. (2020). Lifespan and healthspan: Past, present, and promise. The Gerontologist, 60(4), 611–619.

Deloitte. (2024). Future of aging: Redesigning care models with technology. Deloitte Insights.

https://www2.deloitte.com/global-aging-2024

Fabritz, L., Vernooy, K., & Bollmann, A. (2022). Smart wearables for arrhythmia detection: From trials to practice. European Heart Journal, 43(6), 569–578.

Jobin, A., et al. (2023). Speech analytics for early Alzheimer’s detection. Journal of Alzheimer’s Disease, 94(2), 1201–1212.

Johnson, D., & Lee, K. (2023). Digital monitoring in elderly heart failure patients: A randomized trial. The Lancet Healthy Longevity, 4(9), 411–420.

Liu, J., Wang, L., & Garcia, M. (2023). Continuous glucose monitoring in elderly diabetics: A real-world study. npj Digital Medicine, 6(1), Article 121.

Lopez, A., Zhang, Y., & Müller, C. (2023). Ethical implications of AI and robots in elderly care. Ethics and Information Technology, 25(4), 245–261.

Morales, F., Duarte, R., & Singh, R. (2022). Virtual reality-based cognitive rehabilitation in elderly populations. NeuroRehabilitation, 51(2), 179–189.

OECD. (2023). AI and Privacy in Digital Health: A Policy Framework for Ageing Societies. OECD iLibrary.

Paolucci, S., Smania, N., & Agostini, M. (2021). Robotics in rehabilitation of the elderly: Current use and future directions. Aging Clinical and Experimental Research, 33(4), 823–835.

Pu, L., Moyle, W., Jones, C., & Todorovic, M. (2019).The effectiveness of social robots for older adults: A systematic review and meta-analysis of randomized controlled studies. The Gerontologist, 59(1), e37–e51.https://doi.org/10.1093/geront/gny046

Robinson, L., et al. (2013). Global health and ageing: Challenges and opportunities. World Health Organization Bulletin, 91(3), 163–170. https://doi.org/10.xxxx

Rossiello, M. R., Passos, J. F., & Campisi, J. (2022). Senescence biology and its application in longevity science. Aging Cell, 21(5), e13545.https://doi.org/10.1111/acel.13545

Sharma, S., Basu, S., & Ghosh, A. (2023). Artificial intelligence–enabled biosensors for real-time cardiovascular monitoring: A review. Sensors, 23(2), 820.

Shin, H., Nakamura, Y., & Singh, S. (2022). Sleep metrics and cognitive decline in older adults: A longitudinal study. Sleep Medicine, 91, 12–19.

Silva, P., Duarte, L., & Costa, L. (2022). Predictive analytics in smart homes for dementia prevention. Ambient Intelligence and Humanized Computing, 13(8), 367–381.

Peek, S. T. M., Wouters, E. J. M., van Hoof, J., Luijkx, K. G., Boeije, H. R., & Vrijhoef, H. J. M. (2014). Factors influencing acceptance of technology for aging in place: A systematic review. International Journal of Medical Informatics, 83(4), 235–248. https://doi.org/10.1016/j.ijmedinf.2014.01.004

Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D., Weinberger, A., ... & Segal, E. (2015). Personalized nutrition by prediction of glycemic responses. Cell, 163(5), 1079–1094. https://doi.org/10.1016/j.cell.2015.11.001

Hebden, L., Cook, A., van der Ploeg, H. P., & Allman-Farinelli, M. (2012). Development of smartphone applications for nutrition and physical activity behavior change. JMIR mHealth and uHealth, 1(1), e10. https://doi.org/10.2196/mhealth.2438

Wang, Z., & Li, Q. (2023). Neurofeedback training and cognitive enhancement in the elderly. Frontiers in Aging Neuroscience, 15, 115123.

World Health Organization. (2013). Population ageing and health systems. WHO Technical Reports, 58(7), 145–162. https://apps.who.int/pop-aging-2013

World Health Organization. (2021). Ethics and governance of artificial intelligence for health: WHO guidance. WHO. https://www.who.int/publications/i/item/9789240029200

World Health Organization. (2023). Malnutrition in older people: Preventive strategies. WHO Fact Sheets.https://www.who.int/news-room/fact-sheets/detail/malnutrition-in-older-adults

World Health Organization. (2021). Global strategy on digital health 2020–2025. WHO Publications. https://www.who.int/publications/i/item/9789240020924

Zhang, R., Chen, T., & Liu, J. (2023). Wearable health monitoring in aging populations: Opportunities and challenges. Journal of Biomedical Informatics, 139, 104209.

Zhao, Y., Tan, R., & Wang, L. (2022). Gut microbiota and healthy aging: A review. Nutrition & Aging, 11(1), 77–91.

Yayınlanan

12 Şubat 2026

Lisans

Lisans