Lazer ve Işık Terapilerin Biyofiziksel Mekanizmaları
Özet
Referanslar
Barnett SM, Jeffers J. The quantum theory of light. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences. 2024;382(2287): 20230349. https://doi.org/10.1098/RSTA.2023.0349.
Niemz MH. Laser-Tissue Interactions: Fundamentals and Applications, Fourth Edition. Laser-Tissue Interactions: Fundamentals and Applications, Fourth Edition. 2019; 1–313. https://doi.org/10.1007/978-3-030-11917-1/COVER.
Jacques SL. Optical properties of biological tissues: a review. Physics in medicine and biology. 2013;58(11). https://doi.org/10.1088/0031-9155/58/11/R37.
Sinha U, Behera SR, Layal M. Photon sources and their applications in quantum science and technologies. Progress in Optics. 2023;68: 1–65. https://doi.org/10.1016/BS.PO.2023.01.002.
Singer S, Berneburg M. Phototherapy. Journal der Deutschen Dermatologischen Gesellschaft = Journal of the German Society of Dermatology : JDDG. 2018;16(9): 1120–1131. https://doi.org/10.1111/DDG.13646.
Tuchin V V. Tissue Optics and Photonics: Light-Tissue Interaction. Journal of Biomedical Photonics & Engineering. 2015;1(2): 98–134. https://jbpe.ssau.ru/index.php/JBPE/article/view/2469
Garssen J, Van Loveren H. Effects of Ultraviolet Exposure on the Immune System. Critical Reviews™ in Immunology. 2001;21(4): 359–397. https://doi.org/10.1615/CRITREVIMMUNOL.V21.I4.40.
Garza ZCF, Born M, Hilbers PAJ, van Riel NAW, Liebmann J. Visible Blue Light Therapy: Molecular Mechanisms and Therapeutic Opportunities. Current medicinal chemistry. 2018;25(40): 5564–5577. https://doi.org/10.2174/0929867324666170727112206.
Austin E, Geisler AN, Nguyen J, Kohli I, Hamzavi I, Lim HW, et al. Visible light. Part I: Properties and cutaneous effects of visible light. Journal of the American Academy of Dermatology. 2021;84(5): 1219–1231. https://doi.org/10.1016/J.JAAD.2021.02.048.
Dompe C, Moncrieff L, Matys J, Grzech-Leśniak K, Kocherova I, Bryja A, et al. Photobiomodulation—Underlying Mechanism and Clinical Applications. Journal of Clinical Medicine. 2020;9(6): 1724. https://doi.org/10.3390/JCM9061724.
Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochemistry and photobiology. 2018;94(2): 199–212. https://doi.org/10.1111/PHP.12864.
De Freitas LF, Hamblin MR. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE Journal of Selected Topics in Quantum Electronics. 2016;22(3): 348–364. https://doi.org/10.1109/JSTQE.2016.2561201.
Su CT, Wu JH. Photobiomodulation in biological tissues: Light penetration, dosimetry, and potential applications. Optics and Lasers in Engineering. 2025;186: 108852. https://doi.org/10.1016/J.OPTLASENG.2025.108852.
Tsai SR, Hamblin MR. Biological effects and medical applications of infrared radiation. Journal of Photochemistry and Photobiology B: Biology. 2017;170: 197–207. https://doi.org/10.1016/j.jphotobiol.2017.04.014.
Vatansever F, Hamblin MR. Far infrared radiation (FIR): Its biological effects and medical applications. Photonics and Lasers in Medicine. 2012;1(4): 255–266. https://doi.org/10.1515/plm-2012-0034.
Barolet D, Christiaens F, Hamblin MR. Infrared and skin: Friend or foe. Journal of Photochemistry and Photobiology B: Biology. 2016;155: 78–85. https://doi.org/10.1016/J.JPHOTOBIOL.2015.12.014.
Ozaki Y. Infrared Spectroscopy—Mid-infrared, Near-infrared, and Far-infrared/Terahertz Spectroscopy. Analytical Sciences. 2021;37(9): 1193–1212. https://doi.org/10.2116/analsci.20R008.
Cho DH, Lee HJ, Lee JY, Park JH, Jo I. Far-infrared irradiation inhibits breast cancer cell proliferation independently of DNA damage through increased nuclear Ca2+/calmodulin binding modulated-activation of checkpoint kinase 2. Journal of Photochemistry and Photobiology B: Biology. 2021;219: 112188. https://doi.org/10.1016/J.JPHOTOBIOL.2021.112188.
Vatansever F, Hamblin MR. Far infrared radiation (FIR): Its biological effects and medical applications. Photonics and Lasers in Medicine. 2012;1(4): 255–266. https://doi.org/10.1515/PLM-2012-0034/XML.
Totonchy MB, Chiu MW. UV-based therapy. Dermatologic clinics. 2014;32(3): 399–413. https://doi.org/10.1016/J.DET.2014.03.003.
Kurz B, Ivanova I, Bäumler W, Berneburg M. Turn the light on photosensitivity. Journal of Photochemistry and Photobiology. 2021;8: 100071. https://doi.org/10.1016/J.JPAP.2021.100071.
Schneider LA, Hinrichs R, Scharffetter-Kochanek K. Phototherapy and photochemotherapy. Clinics in Dermatology. 2008;26(5): 464–476. https://doi.org/10.1016/J.CLINDERMATOL.2007.11.004.
Janusz SC, Schwartz RA. Botanical Briefs: Phytophotodermatitis Is an Occupational and Recreational Dermatosis in the Limelight. Cutis. 2021;107(4): 187–189. https://doi.org/10.12788/CUTIS.0225.
Zanolli M. Phototherapy treatment of psoriasis today. Journal of the American Academy of Dermatology. 2003;49(2 A): 78–86. https://doi.org/10.1016/s0190-9622(03)01139-3.
von Thaler AK, Kamenisch Y, Berneburg M. The role of ultraviolet radiation in melanomagenesis. Experimental dermatology. 2010;19(2): 81–88. https://doi.org/10.1111/J.1600-0625.2009.01025.X.
Bäumler W, Regensburger J, Knak A, Felgenträger A, Maisch T. UVA and endogenous photosensitizers - The detection of singlet oxygen by its luminescence. Photochemical and Photobiological Sciences. 2012;11(1): 107–117. https://doi.org/10.1039/C1PP05142C/METRICS.
Vieyra-Garcia PA, Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacology & therapeutics. 2021;222. https://doi.org/10.1016/J.PHARMTHERA.2020.107784.
Richard EG. The Science and (Lost) Art of Psoralen Plus UVA Phototherapy. Dermatologic Clinics. 2020;38(1): 11–23. https://doi.org/10.1016/j.det.2019.08.002.
Hooper M, Hatch L, Seminario-Vidal L. Photodynamic therapy of mycosis fungoides: A systematic review of case studies. Photodermatology, photoimmunology & photomedicine. 2021;37(6): 549–552. https://doi.org/10.1111/PHPP.12698.
Tran D, Kwok YK, Goh CL. A retrospective review of PUVA therapy at the National Skin Centre of Singapore. Photodermatology, photoimmunology & photomedicine. 2001;17(4): 164–167. https://doi.org/10.1034/J.1600-0781.2001.170404.X.
Parrish JA, Jaenicke KF. Action spectrum for phototherapy of psoriasis. Journal of Investigative Dermatology. 1981;76(5): 359–362. https://doi.org/10.1111/1523-1747.ep12520022.
Racz E, Prens EP. Phototherapy and Photochemotherapy for Psoriasis. Dermatologic Clinics. 2015;33(1): 79–89. https://doi.org/10.1016/j.det.2014.09.007.
Rácz E, Prens EP, Kurek D, Kant M, De Ridder D, Mourits S, et al. Effective treatment of psoriasis with narrow-band UVB phototherapy is linked to suppression of the IFN and Th17 pathways. The Journal of investigative dermatology. 2011;131(7): 1547–1558. https://doi.org/10.1038/JID.2011.53.
Johnson-Huang LM, Suárez-Farĩas M, Sullivan-Whalen M, Gilleaudeau P, Krueger JG, Lowes MA. Effective narrow-band UVB radiation therapy suppresses the IL-23/IL-17 axis in normalized psoriasis plaques. The Journal of investigative dermatology. 2010;130(11): 2654–2663. https://doi.org/10.1038/JID.2010.166.
Knak A, Regensburger J, Maisch T, Bäumler W. Exposure of vitamins to UVB and UVA radiation generates singlet oxygen. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology. 2014;13(5): 820–829. https://doi.org/10.1039/C3PP50413A.
Kreutz M, Karrer S, Hoffmann P, Gottfried E, Szeimies RM, Hahn J, et al. Whole-body UVB irradiation during allogeneic hematopoietic cell transplantation is safe and decreases acute graft-versus-host disease. The Journal of investigative dermatology. 2012;132(1): 179–187. https://doi.org/10.1038/JID.2011.255.
Hofer A, Hassan AS, Legat FJ, Kerl H, Wolf P. Optimal weekly frequency of 308-nm excimer laser treatment in vitiligo patients. The British journal of dermatology. 2005;152(5): 981–985. https://doi.org/10.1111/J.1365-2133.2004.06321.X.
Kurz B, Berneburg M, Bäumler W, Karrer S. Phototherapy: Theory and practice. JDDG - Journal of the German Society of Dermatology. 2023;21(8): 882–897. https://doi.org/10.1111/DDG.15126;JOURNAL:JOURNAL:14390353;ISSUE:ISSUE:DOI.
Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomedicine and laser surgery. 2015;33(4): 183–184. https://doi.org/10.1089/PHO.2015.9848.
Panthier F, Berthe L, Traxer O, Abid N, Almeras C, Doizi S. Laser: Definition and technology. The French Journal of Urology. 2025;35(10): 102966. https://doi.org/10.1016/J.FJUROL.2025.102966.
Schmitt HJ, Pothmann R, Banzer W, Hübscher M, Maier M, Kosub M. Physical procedures. Myofascial Trigger Points: Comprehensive Diagnosis and Treatment. 2013; 159–170. https://doi.org/10.1016/B978-0-7020-4312-3.00020-9.
Mussttaf RA, Jenkins DFL, Jha AN. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. International journal of radiation biology. 2019;95(2): 120–143. https://doi.org/10.1080/09553002.2019.1524944.
Ezzati K, Fekrazad R, Raoufi Z. The Effects of Photobiomodulation Therapy on Post-Surgical Pain. Journal of lasers in medical sciences. 2019;10(2): 79–85. https://doi.org/10.15171/JLMS.2019.13.
Thabet AAEM, Elsodany AM, Battecha KH, Alshehri MA, Refaat B. High-intensity laser therapy versus pulsed electromagnetic field in the treatment of primary dysmenorrhea. Journal of physical therapy science. 2017;29(10): 1742–1748. https://doi.org/10.1589/JPTS.29.1742.
Chen CPC, Suputtitada A, Chen CPC, Suputtitada A. Regenerative and Drug-Free Strategies for Chronic Musculoskeletal Pain: An Evidence-Based Perspective on Shockwave Therapy, High-Intensity Laser Therapy and Ultrasound-Guided Mechanical Needling with Sterile Water Injection. Biomedicines 2025, Vol. 13,. 2025;13(11): 2801. https://doi.org/10.3390/BIOMEDICINES13112801.
Brandl A, Egner C, Reisser U, Lingenfelder C, Schleip R. Influence of high-energy laser therapy to the patellar tendon on its ligamentous microcirculation: An experimental intervention study. PLOS ONE. 2023;18(3): e0275883. https://doi.org/10.1371/JOURNAL.PONE.0275883.
Hong SE, Hong MK, Kang SR, Young Park B. Effects of neodymium-yttrium-aluminum garnet (Nd:YAG) pulsed high-intensity laser therapy on full thickness wound healing in an experimental animal model. Journal of cosmetic and laser therapy : official publication of the European Society for Laser Dermatology. 2016;18(8): 432–437. https://doi.org/10.1080/14764172.2016.1202421.
Alayat MSM, Alshehri MA, Shousha TM, Abdelgalil AA, Alhasan H, Khayyat OK, et al. The effectiveness of high intensity laser therapy in the management of spinal disorders: A systematic review and meta-analysis. Journal of back and musculoskeletal rehabilitation. 2019;32(6): 869–884. https://doi.org/10.3233/BMR-181341.
Ozlu O, Atilgan E. The effect of high-intensity laser therapy on pain and lower extremity function in patellofemoral pain syndrome: a single-blind randomized controlled trial. Lasers in Medical Science 2024 39:1. 2024;39(1): 103-. https://doi.org/10.1007/S10103-024-04017-Y.