Nöromodülasyon ve İleri Elektriksel Stimülasyon Teknikleri
Özet
Referanslar
Krishna V, Fasano A. Neuromodulation: Update on current practice and future developments. Neurotherapeutics. 2024;21(3): e00371. https://doi.org/10.1016/j.neurot.2024.e00371.
Bologna M, Merola A, Ricciardi L, [eds]. Innovative Technologies and Clinical Applications for Invasive and Non-Invasive Neuromodulation: From the Workbench to the Bedside. Frontiers Media SA; 2020. https://doi.org/10.3389/978-2-88963-469-9. [Accessed 16th November 2025].
Sarica C, Conner CR, Yamamoto K, Yang A, Germann J, Lannon MM, et al. Trends and disparities in deep brain stimulation utilization in the United States: a Nationwide Inpatient Sample analysis from 1993 to 2017. The Lancet Regional Health - Americas. 2023;26: 100599. https://doi.org/10.1016/j.lana.2023.100599.
Larrivee D, Mansoor Rayegani S, [eds]. Neurostimulation and Neuromodulation in Contemporary Therapeutic Practice. IntechOpen; 2020. https://doi.org/10.5772/intechopen.77890. [Accessed 16th November 2025].
Krames ES. Neuromodulation. Burlington: Elsevier Science & Technology; 2009.
Dudel J, Thurm U, Markl H, Zwicker E, Manley G, Neuweiler G, et al. Neurobiophysics. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysics. Berlin, Heidelberg: Springer Berlin Heidelberg; 1983. p. 641–787. https://doi.org/10.1007/978-3-642-68877-5_15. [Accessed 9th December 2025].
Fisher KA, Stoeckenius W, Sackmann E, Neumcke B, Weisenseel MH, Fromter E, et al. Membranes. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysics. Berlin, Heidelberg: Springer Berlin Heidelberg; 1983. p. 413–514. https://doi.org/10.1007/978-3-642-68877-5_12. [Accessed 9th December 2025].
Enderle JD. Bioelectric Phenomena. In: Introduction to Biomedical Engineering. Elsevier; 2012. p. 747–815. https://doi.org/10.1016/B978-0-12-374979-6.00012-5. [Accessed 9th December 2025].
Akhtari M, Bryant HC, Mamelak AN, Flynn ER, Heller L, Shih JJ, et al. Conductivities of Three-Layer Live Human Skull. Brain Topography. 2002;14(3): 151–167. https://doi.org/10.1023/A:1014590923185.
Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clinical Neurophysiology. 2006;117(7): 1623–1629. https://doi.org/10.1016/j.clinph.2006.04.009.
Tuch DS, Wedeen VJ, Dale AM, George JS, Belliveau JW. Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proceedings of the National Academy of Sciences. 2001;98(20): 11697–11701. https://doi.org/10.1073/pnas.171473898.
Ruffini G, Wendling F, Merlet I, Molaee-Ardekani B, Mekonnen A, Salvador R, et al. Transcranial Current Brain Stimulation (tCS): Models and Technologies. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2013;21(3): 333–345. https://doi.org/10.1109/TNSRE.2012.2200046.
McIntyre CC, Grill WM, Sherman DL, Thakor NV. Cellular Effects of Deep Brain Stimulation: Model-Based Analysis of Activation and Inhibition. Journal of Neurophysiology. 2004;91(4): 1457–1469. https://doi.org/10.1152/jn.00989.2003.
McIntyre CC, Richardson AG, Grill WM. Modeling the Excitability of Mammalian Nerve Fibers: Influence of Afterpotentials on the Recovery Cycle. Journal of Neurophysiology. 2002;87(2): 995–1006. https://doi.org/10.1152/jn.00353.2001.
Hutcheon B, Yarom Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends in Neurosciences. 2000;23(5): 216–222. https://doi.org/10.1016/S0166-2236(00)01547-2.
Doelling KB, Assaneo MF. Neural oscillations are a start toward understanding brain activity rather than the end. PLOS Biology. 2021;19(5): e3001234. https://doi.org/10.1371/journal.pbio.3001234.
Riddle J, Frohlich F. Targeting neural oscillations with transcranial alternating current stimulation. Brain Research. 2021;1765: 147491. https://doi.org/10.1016/j.brainres.2021.147491.
Chail A, Saini R, Bhat P, Srivastava K, Chauhan V. Transcranial magnetic stimulation: A review of its evolution and current applications. Industrial Psychiatry Journal. 2018;27(2): 172. https://doi.org/10.4103/ipj.ipj_88_18.
Ali MM, Sellers KK, Frohlich F. Transcranial Alternating Current Stimulation Modulates Large-Scale Cortical Network Activity by Network Resonance. Journal of Neuroscience. 2013;33(27): 11262–11275. https://doi.org/10.1523/JNEUROSCI.5867-12.2013.
Johnson M. Transcutaneous Electrical Nerve Stimulation: Mechanisms, Clinical Application and Evidence. Reviews in Pain. 2007;1(1): 7–11. https://doi.org/10.1177/204946370700100103.
Lin CW, Cheng MH, Fan CH, Chen HH, Yeh CK. Focused ultrasound stimulation of infralimbic cortex attenuates reinstatement of methamphetamine-induced conditioned place preference in rats. Neurotherapeutics. 2024;21(3): e00328. https://doi.org/10.1016/j.neurot.2024.e00328.
Reato D, Rahman A, Bikson M, Parra LC. Low-Intensity Electrical Stimulation Affects Network Dynamics by Modulating Population Rate and Spike Timing. The Journal of Neuroscience. 2010;30(45): 15067–15079. https://doi.org/10.1523/JNEUROSCI.2059-10.2010.
Deng ZD, Lisanby SH, Peterchev AV. Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimulation. 2013;6(1): 1–13. https://doi.org/10.1016/j.brs.2012.02.005.
Kamimura HAS, Conti A, Toschi N, Konofagou EE. Ultrasound Neuromodulation: Mechanisms and the Potential of Multimodal Stimulation for Neuronal Function Assessment. Frontiers in Physics. 2020;8: 150. https://doi.org/10.3389/fphy.2020.00150.
Cogan SF. Neural Stimulation and Recording Electrodes. Annual Review of Biomedical Engineering. 2008;10(1): 275–309. https://doi.org/10.1146/annurev.bioeng.10.061807.160518.
DaSilva AF, Volz MS, Bikson M, Fregni F. Electrode Positioning and Montage in Transcranial Direct Current Stimulation. Journal of Visualized Experiments. 2011;(51): 2744. https://doi.org/10.3791/2744.
Reato D, Rahman A, Bikson M, Parra LC. Effects of weak transcranial alternating current stimulation on brain activity—a review of known mechanisms from animal studies. Frontiers in Human Neuroscience. 2013;7. https://doi.org/10.3389/fnhum.2013.00687.
Stagg CJ, Nitsche MA. Physiological Basis of Transcranial Direct Current Stimulation. The Neuroscientist. 2011;17(1): 37–53. https://doi.org/10.1177/1073858410386614.
Bunai T, Hirosawa T, Kikuchi M, Fukai M, Yokokura M, Ito S, et al. tDCS-induced modulation of GABA concentration and dopamine release in the human brain: A combination study of magnetic resonance spectroscopy and positron emission tomography. Brain Stimulation. 2021;14(1): 154–160. https://doi.org/10.1016/j.brs.2020.12.010.
Abbott LF, Nelson SB. Synaptic plasticity: taming the beast. Nature Neuroscience. 2000;3(S11): 1178–1183. https://doi.org/10.1038/81453.
Sluka KA, Walsh D. Transcutaneous electrical nerve stimulation: Basic science mechanisms and clinical effectiveness. The Journal of Pain. 2003;4(3): 109–121. https://doi.org/10.1054/jpai.2003.434.
Kansal A, Copley S, Duarte RV, Warren FC, Taylor RS, Eldabe S. Systematic Review to Identify Patient-Level Predictors of Treatment Response to Spinal Cord Stimulation for Neuropathic Pain for Studies Published From 2012 to 2024. Neuromodulation: Technology at the Neural Interface. 2025;28(6): 890–902. https://doi.org/10.1016/j.neurom.2025.04.004.
Chen SH, Lin YW, Tseng WL, Lin WT, Lin SC, Hsueh YY. Ultrahigh frequency transcutaneous electrical nerve stimulation for neuropathic pain alleviation and neuromodulation. Neurotherapeutics. 2024;21(3): e00336. https://doi.org/10.1016/j.neurot.2024.e00336.
Gouveia FV, Warsi NM, Suresh H, Matin R, Ibrahim GM. Neurostimulation treatments for epilepsy: Deep brain stimulation, responsive neurostimulation and vagus nerve stimulation. Neurotherapeutics. 2024;21(3): e00308. https://doi.org/10.1016/j.neurot.2023.e00308.
Liu FJ, Wu J, Gong LJ, Yang HS, Chen H. Non-invasive vagus nerve stimulation in anti-inflammatory therapy: mechanistic insights and future perspectives. Frontiers in Neuroscience. 2024;18: 1490300. https://doi.org/10.3389/fnins.2024.1490300.
Du J, Luo S, Shi P. A Wearable EMG-Driven Closed-Loop TENS Platform for Real-Time, Personalized Pain Modulation. Sensors. 2025;25(16): 5113. https://doi.org/10.3390/s25165113.
Li C, Chen Y, Tu S, Lin J, Lin Y, Xu S, et al. Dual‐tDCS combined with sensorimotor training promotes upper limb function in subacute stroke patients: A randomized, double‐blinded, sham‐controlled study. CNS Neuroscience & Therapeutics. 2024;30(4): e14530. https://doi.org/10.1111/cns.14530.
Khan MA, Fares H, Ghayvat H, Brunner IC, Puthusserypady S, Razavi B, et al. A systematic review on functional electrical stimulation based rehabilitation systems for upper limb post-stroke recovery. Frontiers in Neurology. 2023;14: 1272992. https://doi.org/10.3389/fneur.2023.1272992.
Meng J, Yan Z, Gu F, Tao X, Xue T, Liu D, et al. Transcranial direct current stimulation with virtual reality versus virtual reality alone for upper extremity rehabilitation in stroke: A meta-analysis. Heliyon. 2023;9(1): e12695. https://doi.org/10.1016/j.heliyon.2022.e12695.
Guo B, Zhang M, Hao W, Wang Y, Zhang T, Liu C. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Translational Psychiatry. 2023;13(1): 5. https://doi.org/10.1038/s41398-022-02297-y.
Sharbafshaaer M, Cirillo G, Esposito F, Tedeschi G, Trojsi F. Harnessing Brain Plasticity: The Therapeutic Power of Repetitive Transcranial Magnetic Stimulation (rTMS) and Theta Burst Stimulation (TBS) in Neurotransmitter Modulation, Receptor Dynamics, and Neuroimaging for Neurological Innovations. Biomedicines. 2024;12(11): 2506. https://doi.org/10.3390/biomedicines12112506.
Tang AD, Bennett W, Bindoff AD, Bolland S, Collins J, Langley RC, et al. Subthreshold repetitive transcranial magnetic stimulation drives structural synaptic plasticity in the young and aged motor cortex. Brain Stimulation. 2021;14(6): 1498–1507. https://doi.org/10.1016/j.brs.2021.10.001.
Mitew S, Gobius I, Fenlon LR, McDougall SJ, Hawkes D, Xing YL, et al. Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nature Communications. 2018;9(1): 306. https://doi.org/10.1038/s41467-017-02719-2.
Chen Y, Mao L, Zhou Q, Bai D, Kong Y. Role of BDNF-TrkB signaling in the improvement of motor function and neuroplasticity after ischemic stroke in rats by transcranial direct current stimulation. Brain Research Bulletin. 2025;220: 111164. https://doi.org/10.1016/j.brainresbull.2024.111164.
Zheng K, Guo L, Liang W, Liu P. Comparison of the effects of transcranial direct current stimulation combined with different rehabilitation interventions on motor function in people suffering from stroke-related symptoms: a systematic review and network meta-analysis. Frontiers in Neurology. 2025;16: 1586685. https://doi.org/10.3389/fneur.2025.1586685.
Choudhury S, Sarkar S, Mukherjee D, Das K, Chakraborty A, Roy S, et al. Cortical Excitability and Heart Rate Variability in Response to Short Duration Transauricular Vagus Nerve Stimulation in Healthy Adults. Neuromodulation: Technology at the Neural Interface. 2025;28(8): 1408–1417. https://doi.org/10.1016/j.neurom.2025.07.011.
Davidson B, Bhattacharya A, Sarica C, Darmani G, Raies N, Chen R, et al. Neuromodulation techniques – From non-invasive brain stimulation to deep brain stimulation. Neurotherapeutics. 2024;21(3): e00330. https://doi.org/10.1016/j.neurot.2024.e00330.
Van Hoornweder S, Vanderzande L, Bloemers E, Verstraelen S, Depestele S, Cuypers K, et al. The effects of transcranial direct current stimulation on upper-limb function post-stroke: A meta-analysis of multiple-session studies. Clinical Neurophysiology. 2021;132(8): 1897–1918. https://doi.org/10.1016/j.clinph.2021.05.015.
Cai H, Hu J, Zhao C, Lin J. Wearable devices in neurological disorders: a narrative review of status quo and perspectives. Annals of Translational Medicine. 2025;13(4): 46–46. https://doi.org/10.21037/atm-25-46.
Dannhauer M, Gomez LJ, Robins PL, Wang D, Hasan NI, Thielscher A, et al. Electric Field Modeling in Personalizing Transcranial Magnetic Stimulation Interventions. Biological Psychiatry. 2024;95(6): 494–501. https://doi.org/10.1016/j.biopsych.2023.11.022.
Acharyya P, Daley KW, Choi JW, Wilkins KB, Karjagi S, Cui C, et al. Closing the loop in DBS: A data-driven approach. Parkinsonism & Related Disorders. 2025;134: 107348. https://doi.org/10.1016/j.parkreldis.2025.107348.