Fonksiyonel Elektrik Stimülasyonu ve Biofeedback Sistemlerinin Biyofiziksel Temelleri
Özet
Bu bölüm, fonksiyonel elektrik stimülasyonu (FES) ve biofeedback sistemlerinin nörorehabilitasyondaki rolünü biyofiziksel ve nörofizyolojik temelleriyle birlikte ele almaktadır. FES’in sinir ve kas dokularında oluşturduğu elektriksel uyarımın hücresel ve doku düzeyindeki mekanizmaları; membran potansiyel değişimleri, aksiyon potansiyeli oluşumu ve frekans-bağımlı kas yanıtları üzerinden açıklanmaktadır. Biofeedback sistemlerinin sensörimotor döngüler üzerindeki rolü ise gerçek zamanlı geri bildirim, hata-temelli motor öğrenme ve nöroplastisite bağlamında değerlendirilmektedir. Bölümde elektromiyografi (EMG), elektroensefalografi (EEG) ve hareket sensörlerine dayalı ölçüm sistemleri ile kapalı döngü FES yaklaşımlarının biyofiziksel işleyişi ve sinyal işleme prensipleri ayrıntılı olarak sunulmaktadır. EEG ve beyin-bilgisayar arayüzü (BCI) destekli FES uygulamalarının, motor niyetin doğrudan algılanmasına olanak tanıyarak istemli kas aktivitesi oluşturamayan bireylerde bile fonksiyonel hareketi mümkün kıldığı vurgulanmaktadır. Son olarak, bu bütünleşik yaklaşımların nöroplastisiteyi güçlendirme potansiyeli, klinik rehabilitasyon uygulamaları ve yapay zekâ destekli gelecek teknolojileri çerçevesinde ele alınmaktadır.
Referanslar
Marquez-Chin C, Popovic MR. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review. Biomedical Engineering Online. 2020;19(1):34. doi:10.1186/s12938-020-00773-4
Khan MA, Fares H, Ghayvat H, et al. A systematic review on functional electrical stimulation based rehabilitation systems for upper limb post-stroke recovery. Frontiers in Neurology. 2023;14:1272992. doi:10.3389/fneur.2023.1272992
Milosevic M, Marquez-Chin C, Masani K, et al. Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation. Biomedical Engineering Online. 2020;19(1):81. doi:10.1186/s12938-020-00824-w.
Tosti B, Corrado S, Mancone S, et al. Integrated use of biofeedback and neurofeedback techniques in treating pathological conditions and improving performance: A narrative review. Frontiers in Neuroscience. 2024;18:1358481. doi:10.3389/fnins.2024.1358481
Bowman T, Gervasoni E, Arienti C, et al. Wearable devices for biofeedback rehabilitation: A systematic review and meta-analysis to design application rules and estimate the effectiveness on balance and gait outcomes in neurological diseases. Sensors. 2021;21(10):3444. doi:10.3390/s21103444
Campbell KR, Peterka RJ, Fino PC, et al. The effects of augmenting traditional rehabilitation with audio biofeedback in people with persistent imbalance following mild traumatic brain injury. Frontiers in Neurology. 2022;13:926691. doi:10.3389/fneur.2022.926691
Papachristos A. Functional electrical stimulation in paraplegia. In: Stillman BC, McGinnis PM (eds.). Topics in Paraplegia. Rijeka: InTechOpen; 2014. p. 109–126.
Catterall WA. Voltage gated sodium and calcium channels: Discovery, structure, function, and pharmacology. Channels. 2023;17(1):2281714. doi:10.1080/19336950.2023.2281714
Rodríguez Cruz PM, Cossins J, Beeson D, Vincent A. The neuromuscular junction in health and disease: Molecular mechanisms governing synaptic formation and homeostasis. Frontiers in Molecular Neuroscience. 2020;13:610964. doi:10.3389/fnmol.2020.610964
Bennett DL, Clark AJ, Huang J, et al. The role of voltage-gated sodium channels in pain signaling. Physiological Reviews. 2019;99(2):1079–1151. doi:10.1152/physrev.00052.2017
Feher J. The neuromuscular junction and excitation–contraction coupling. In: Quantitative Human Physiology. 2nd ed. Academic Press; 2017. p.318–333. doi:10.1016/b978-0-12-800883-6.00029-x
Allard B. From excitation to intracellular Ca²⁺ movements in skeletal muscle: Basic aspects and related clinical disorders. Neuromuscular Disorders. 2018;28(5):394–401. doi:10.1016/j.nmd.2018.03.004
Chandrasekaran S, Davis J, Bersch I, et al. Electrical stimulation and denervated muscles after spinal cord injury. Neural Regeneration Research. 2020;15(8):1397–1407. doi:10.4103/1673-5374.274326
Kern H, Carraro U. Home-based functional electrical stimulation for long-term denervated human muscle: History, basics, results and perspectives of the Vienna rehabilitation strategy. European Journal of Translational Myology. 2014;24(1):3296. doi:10.4081/ejtm.2014.3296
Tomita A, Kawade S, Moritani T, et al. Novel perspective on contractile properties and intensity-dependent verification of force–frequency relationship during neuromuscular electrical stimulation. Physiological Reports. 2020;8(22):e14598. doi:10.14814/phy2.14598
MacIntosh BR, Willis JC. Force–frequency relationship and potentiation in mammalian skeletal muscle. Journal of Applied Physiology. 2000;88(6):2088–2096. doi:10.1152/jappl.2000.88.6.2088
Zhou X, Knisley SB, Smith WM, et al. Spatial changes in transmembrane potential during extracellular electrical stimulation. Circulation Research. 1998;83(10):1003–1014. doi:10.1161/01.res.83.10.1003
Knisley SB, Blitchington TF, Hill BC, et al. Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells. Circulation Research. 1993;72(2):255–270. doi:10.1161/01.RES.72.2.255
Howell B, Medina LE, Grill WM, et al. Effects of frequency-dependent membrane capacitance on neural excitability. Journal of Neural Engineering. 2015;12(5):056015. doi:10.1088/1741-2560/12/5/056015
Grill WM Jr. Modeling the effects of electric fields on nerve fibers: Influence of tissue electrical properties. IEEE Transactions on Biomedical Engineering. 1999;46(8):918–928. doi:10.1109/10.775401
Gielen FL, Cruts HE, Albers BA, et al. Model of electrical conductivity of skeletal muscle based on tissue structure. Medical and Biological Engineering and Computing. 1986;24(1):34–40. doi:10.1007/BF02441603
Bickel CS, Gregory CM, Dean JC. Motor unit recruitment during neuromuscular electrical stimulation: A critical appraisal. European Journal of Applied Physiology. 2011;111(10):2399–2407. doi:10.1007/s00421-011-2128-4
Hays MA, Kamali G, Koubeissi MZ, et al. Towards optimizing single pulse electrical stimulation: High current intensity, short pulse width stimulation most effectively elicits evoked potentials. Brain Stimulation. 2023;16(3):772–782. doi:10.1016/j.brs.2023.04.023
Biasiucci A, Leeb R, Iturrate I, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nature Communications. 2018;9:2421. doi:10.1038/s41467-018-04673-z
Milosevic M, Nakanishi T, Sasaki A, et al. Cortical re-organization after traumatic brain injury elicited using functional electrical stimulation therapy: A case report. Frontiers in Neuroscience. 2021;15:693861. doi:10.3389/fnins.2021.693861
Albert S, Shadmehr R. The neural feedback response to error as a teaching signal for the motor learning system. The Journal of Neuroscience. 2016;36(17):4832–4845. doi:10.1523/JNEUROSCI.0159-16.2016
Remsik AB, van Kan PLE, Gloe S, et al. BCI-FES with multimodal feedback for motor recovery poststroke. Frontiers in Human Neuroscience. 2022;16:725715. doi:10.3389/fnhum.2022.725715
Chou L, Kou M, Lee H, et al. The neural correlates and behavioral impact of peripheral noise electrical stimulation on motor learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2025;33(1):1263–1270. doi:10.1109/TNSRE.2025.3555203
Bhattacharyya S, Hayashibe M. Brain–computer interface–functional electrical stimulation: From control to neurofeedback in rehabilitation. In: Kumar B, Majumder S (eds.). Bioelectronics and Medical Devices. Oxford: Elsevier; 2019. p. 779–792. doi:10.1016/B978-0-08-102420-1.00037-6
Kronberg G, Rahman A, Sharma M, et al. Direct current stimulation boosts Hebbian plasticity in vitro. Brain Stimulation. 2020;13(2):287–301. doi:10.1016/j.brs.2019.10.014
Bjørndal JR, Beck MM, Jespersen L, et al. Hebbian priming of human motor learning. Nature Communications. 2024;15:5126. doi:10.1038/s41467-024-49478-5
Lin CW, Chen SH, Cheng SM, et al. Distal electrical stimulation enhances neuromuscular reinnervation and satellite cell differentiation for functional recovery. Stem Cell Research & Therapy. 2025;16(1):322. doi:10.1186/s13287-025-04459-3
Guo Y, Phillips B, Atherton PJ, et al. Molecular and neural adaptations to neuromuscular electrical stimulation: Implications for ageing muscle. Mechanisms of Ageing and Development. 2021;193:111402. doi:10.1016/j.mad.2020.111402
Giggins OM, Persson UM, Caulfield B. Biofeedback in rehabilitation. Journal of NeuroEngineering and Rehabilitation. 2013;10:60. doi:10.1186/1743-0003-10-60.
Escamilla-Nunez R, Michelini A, Andrysek J. Biofeedback systems for gait rehabilitation of individuals with lower-limb amputation: A systematic review. Sensors (Basel). 2020;20(6):1628. doi:10.3390/s20061628
Safavynia SA, Ting LH. Long-latency muscle activity reflects continuous, delayed sensorimotor feedback of task-level and not joint-level error. Journal of Neurophysiology. 2013;110(6):1278–1290. doi:10.1152/jn.00609.2012.
Farina D, Cescon C, Merletti R. Influence of anatomical, physical, and detection-system parameters on surface EMG. Biological Cybernetics. 2002;86(6):445–456. doi:10.1007/s00422-002-0309-2
Babiloni C, Barry R, Başar E, et al. International Federation of Clinical Neurophysiology (IFCN) – EEG research workgroup: Recommendations on frequency and topographic analysis of resting-state EEG rhythms. Part 1: Applications in clinical research studies. Clinical Neurophysiology. 2020;131(1):285–307. doi:10.1016/j.clinph.2019.06.234.
Islam MK, Rastegarnia A, Yang Z, et al. Methods for artifact detection and removal from scalp EEG: A review. Neurophysiologie Clinique/Clinical Neurophysiology. 2016;46(4–5):287–305. doi:10.1016/j.neucli.2016.07.002
Gorjan D, Gramann K, De Pauw K, et al. Removal of movement-induced EEG artifacts: Current state of the art and guidelines. Journal of Neural Engineering. 2022;19(1):10.1088/1741-2552/ac542c. doi:10.1088/1741-2552/ac542c
Shad E, Molinas M, Ytterdal T. Impedance and noise of passive and active dry EEG electrodes: A review. IEEE Sensors Journal. 2020;20:14565–14577. doi:10.1109/jsen.2020.3012394
Kappenman E, Luck S. The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology. 2010;47(5):888–904. doi:10.1111/j.1469-8986.2010.01009.x
Yousefi T, Dabbaghian A, Kassiri H. Motion-affected electrode–tissue interface characterization for ambulatory EEG recording. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 20–24 July 2020, Montréal, Canada. IEEE; 2020. p. 4479–4482. doi:10.1109/EMBC44109.2020.9176671
Bublitz C, Ligthart S. The new regulation of non-medical neurotechnologies in the European Union: overview and reflection. Journal of Law and the Biosciences. 2024;11(2):lsae021. doi:10.1093/jlb/lsae021
Bretthauer M, Gerke S, Hassan C, et al. The New European Medical Device Regulation: Balancing Innovation and Patient Safety. Annals of Internal Medicine. 2023;176(6):844–848. doi:10.7326/M23-0454