Magnetoterapinin Biyofiziksel Esasları Ve Kullanım Alanları

Özet

Ağrı; travma, bası, darp gibi çeşitli etkenlerle ortaya çıkan ve bireyin geçmiş deneyimlerine bağlı olarak algılanan, hoş olmayan duyusal ve emosyonel bir durumdur. Ağrının tanı ve tedavisinde kullanılan alternatif yöntemlerden biri magnetoterapidir. Magnetoterapi, tedavi aracı olarak manyetik alanın kullanılmasını esas alan, girişimsel ve farmakolojik temellere dayanmayan bir uygulamadır. Tarihsel olarak magnetoterapinin kökenleri Çin, Yunan, Avrupa ve Japon antik tıbbına kadar uzanmaktadır. Analjezik ve anti-enflamatuar etkileri nedeniyle özellikle ağrı tedavilerinde kullanılmakta; bunun yanı sıra nöropatik, ortopedik ve romatolojik hastalıklarda terapötik etkinlik göstermektedir. Manyetik alan ile elektrik alan arasındaki ilişki elektromanyetizma kapsamında ele alınır ve bu ilişki Maxwell denklemleri ile tanımlanır. Hall etkisi ise manyetik alan içerisinde hareket eden yüklü parçacıklara etki eden kuvvetleri açıklamakta ve birçok medikal araştırma ile cihaz tasarımına temel oluşturmaktadır. Manyetik alanlar; özellikleri sabit olduğunda statik manyetik alan, zamana bağlı değişim gösterdiğinde dinamik manyetik alan olarak sınıflandırılır. Dinamik manyetik alanlar alternatif ve pulslu manyetik alanlar şeklinde ikiye ayrılır. Güncel preklinik ve klinik çalışmalar, magnetoterapinin etkinliğini desteklemektedir. Gelecekte, patofizyolojik mekanizmalar dikkate alınarak biyofiziksel prensiplere uygun, yeni magnetoterapi cihazlarının geliştirilmesi öngörülmektedir.

Referanslar

Mert T, Sahin E, Yaman S, et al. (2018). Pain-relieving effectiveness of co-treatment with local tramadol and systemic minocycline in carrageenan-induced inflammatory pain model. Inflammation, 41(4), 1238–1249.

https://doi.org/10.1007/s10753-018-0771-1.

Zhang JM, An J. (2007). Cytokines, inflammation, and pain. International Anesthesiology Clinics, 45, 27–37.

Shi X, Xie Y, Zhao N, et al. (2025). Internet of Things-based pulsed electromagnetic field combined with exercise therapy in patients with knee osteoarthritis: Randomized, controlled, noninferiority trial protocol. Trials, 26(1), 529. https://doi.org/10.1186/s13063-025-09162-5.

Zečević Luković T, Ristić B, Jovanović Z, et al. (2012). Complex regional pain syndrome type I in the upper extremity: How efficient physical therapy and rehabilitation are. Medical Glasnik (Zenica), 9(2), 334–340.

Çelebi G. (2008). Biyomedikal fizik. İzmir: Barış Yayınları Fakülteler Kitabevi.

Markov MS. (2007). Expanding use of pulsed electromagnetic field therapies.lectromagnetic Biology and Medicine, 26(3), 257–274.https://doi.org/10.1080/15368370701580806.

Shupak NM, Prato FS, Thomas AW. (2004). Human exposure to a specific pulsed magnetic field: Effects on thermal sensory and pain thresholds. Neuroscience Letters, 363(2), 157–162.https://doi.org/10.1016/j.neulet.2004.03.069.

Guneş S, Büyükakıllı B. (2013) Düşük frekanslı sinüzoidal manyetik alanın sıçan kas elektriksel ve mekanik aktiviteleri üzerine etkileri.

Tran M. (2018). Evidence for Maxwell’s equations, fields, force laws and alternative theories of classical electrodynamics. European Journal of Physics, 39(6), 063001.

Ramesh K, Tripathi D, Bég O, et al. (2019). Slip and Hall current effects on Jeffrey fluid suspension flow in a peristaltic hydromagnetic blood micropump. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43(4), 675–692.

Pehlivan, F. (2016). Tıbbi fizik. Ankara: Pelikan Yayınevi.

Hayat T, Asghar S, Tanveer A, et al. (2019). Effects of Hall current and ion-slip on the peristaltic motion of couple stress fluid with thermal deposition. Neural Computing & Applications, 31, 117–126.https://doi.org/10.1007/s00521-017-2984-x.

Aykut İ, Günay İ. (1997). AC manyetik alana maruz bırakılan deneysel olarak oluşturulan diyabetli sıçanların extensor digitorum longus ve soleus kasının biyoelektrik, biyomekanik, biyokimyasal ve histolojik özellikleri.

Tasić T, Lozić M, Glumac S, et al. (2021). Static magnetic field on behavior, hematological parameters and organ damage in spontaneously hypertensive rats. Ecotoxicology and Environmental Safety, 207, 111085.

Zhang X, Yarema K, Xu A. (2017). Biological effects of static magnetic fields (ss. 1–21). Beijing: Science Press.

Zhang, B., et al. (2023). Biophysical mechanisms underlying the effects of static magnetic fields on biological systems. Progress in Biophysics and Molecular Biology, 177, 14–23.

Pauling L. (1977). Magnetic properties and structure of oxyhemoglobin. Proceedings of the National Academy of Sciences of the United States of America, 74(7), 2612–2613.

https://doi.org/10.1073/pnas.74.7.2612.

Zamanian A, Hardiman CJHFE. (2005). Electromagnetic radiation and human health: A review of sources and effects. High Frequency Electronics, 4(3), 16–26.

Panagopoulos DJ, Yakymenko I, De Iuliis GN, et al. (2025). A comprehensive mechanism of biological and health effects of anthropogenic extremely low frequency and wireless communication electromagnetic fields. Frontiers in Public Health, 13, 1585441.https://doi.org/10.3389/fpubh.2025.1585441.

Li W., Liu W, Wang W, et al. (2021). Sinusoidal electromagnetic fields accelerate bone regeneration by boosting the multifunctionality of bone marrow mesenchymal stem cells. Stem Cell Research & Therapy, 12(1), 234.https://doi.org/10.1186/s13287-021-02302-z.

Nelson I. (2025). Exploring the influence of Schumann resonance and electromagnetic fields on bioelectricity and human health. Electromagnetic Biology and Medicine, 44(3),348–358.https://doi.org/10.1080/15368378.2025.2508466.

Rosen AD. (2003). Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochemistry and Biophysics, 39(2), 163–173.

Yu S, Shang P. (2014). Kemirgen modelleri üzerindeki statik manyetik alanın biyoetkilerinin incelenmesi. Progress in Biophysics and Molecular Biology, 114(1), 14–24.

Lisi, A., et al. (2000). Three-dimensional (3D) analysis of the morphological changes induced by 50 Hz magnetic field exposure on human lymphoblastoid cells (Raji). Bioelectromagnetics, 21(1), 46–51.

Belova NA, Lednev VV. (2000). Dependence of gravitotropic reaction in segments of flax stems on frequency and amplitude of variable components of a weak combined magnetic field. Biofizika, 45(6), 1108–1111.

Jenrow KA, Smith CH, Liboff AR. (1995). Weak extremely-low-frequency magnetic fields and regeneration in the planarian Dugesia tigrina. Bioelectromagnetics, 16(2), 106–112.

Krylov VV, Osipova EA. (2023). Molecular biological effects of weak low-frequency magnetic fields: Frequency–amplitude efficiency windows and possible mechanisms. International Journal of Molecular Sciences, 24, 10989.

https://doi.org/10.3390/ijms241310989.

Özkan N. (2015). Manyetik alan tedavisi (Magnetoterapi). Bilimsel Tamamlayıcı Tıp, Regülasyon ve Nöral Terapi Dergisi, 9(3), 17–22.

Markov, M. S. (2007). Magnetic field therapy: A review. Electromagnetic Biology and Medicine, 26(1), 1–23.

https://doi.org/10.1080/15368370600925342.

Mert, T. (2017). Pulsed magnetic field treatment as antineuropathic pain therapy. Reviews in the Neurosciences, 28(7), 751–758.

https://doi.org/10.1515/revneuro-2017-0003.

Yu S, Shang P. Kemirgen modelleri üzerindeki statik manyetik alanın biyoetkilerinin incelenmesi. Prog Biophys Mol Biol. 2014; 114(1):14–24.

Mert T, Metin TO, Sahin E, et al. (2021). Neuroprotective and anti-neuropathic actions of pulsed magnetic fields with low frequencies in rats with chronic peripheral neuropathic pain. Brain Research Bulletin, 177, 273–281.

https://doi.org/10.1016/j.brainresbull.2021.10.012.

Mert T, Sahin M, Sahin E, et al(2020). Magnetic field exposure modulates the anti-inflammatory efficiency of minocycline in rats with peripheral acute inflammation. Alternative Therapies in Health and Medicine, 26(6), 18–28.

Mert T, Sahin E, Yaman S, et al. (2022). Pulsed magnetic field treatment ameliorates the progression of peripheral neuropathy by modulating neuronal oxidative stress, apoptosis, and angiogenesis in a rat model of experimental diabetes. Archives of Physiology and Biochemistry, 128(6), 1658–1665.

https://doi.org/10.1080/13813455.2020.1788098.

Mert T, Yaman S. (2020). Pro-inflammatory or anti-inflammatory effects of pulsed magnetic field treatments in rats with experimental acute inflammation. Environmental Science and Pollution Research, 27(25), 31543–31554.

https://doi.org/10.1007/s11356-020-09401-z.

Wang X, Wang X, Zhao C, et al. (2025). Enhancement of cognitive behavior and hippocampal neural oscillations by rhythmic unipolar pulsed magnetic stimulation in 5xFAD Alzheimer’s disease mice. Behavioural Brain Research, 500, 115995.

https://doi.org/10.1016/j.bbr.2025.115995.

Patricio P, Tittley J, de Oliveira FCL, et al. (2026). Repetitive transcranial magnetic stimulation and motor control exercise for chronic low back pain: The ExTraStim randomized placebo-controlled trial. Journal of Orthopaedic & Sports Physical Therapy, 56(1), 1–10.

https://doi.org/10.2519/jospt.2025.13681.

Fan Y, Ji X, Zhang L, et al. (2021). The analgesic effects of static magnetic fields. Bioelectromagnetics, 42(2), 115–127.

https://doi.org/10.1002/bem.22323.

Weintraub MI, Wolfe GI, Barohn, et al. (2003). Static magnetic field therapy for symptomatic diabetic neuropathy: A randomized, double-blind, placebo-controlled trial. Archives of Physical Medicine and Rehabilitation, 84, 736–746.

Vallbona C, Hazlewood CF, Jurida G. (1997). Response of pain to static magnetic fields in postpolio patients: A double-blind pilot study. Archives of Physical Medicine and Rehabilitation, 78, 1200–1203.

Brown CS, Ling FW, Wan JY, et al. (2002). Efficacy of static magnetic field therapy in chronic pelvic pain: A double-blind pilot study. American Journal of Obstetrics and Gynecology, 187, 1581–1587.

Hinman RM, Ford J, Heyl H. (2002). Effects of static magnets on chronic knee pain and physical function: A double-blind study. Alternative Therapies in Health and Medicine, 8, 50–55.

Gao YG, Tan YZ, Chen H, et al. (1993). Clinical observation of 1128 cases of enteric spastic abdominal pain treated by magnetic field therapy. Journal of Clinical Pediatrics, 18, 140–141.

Dou, J. L. (2016). The observation of effect for distal radial fractures by magnet therapy cooperating with pyritum pills Heilongjiang University of Chinese Medicine, Harbin, China.

Erişim adresi: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201701&filename=1016324210.nh

László JF, János F, Farkas P, et al. (2012). Effect of local exposure to inhomogeneous static magnetic field on stomatological pain sensation: A double-blind, randomized, placebo-controlled study. International Journal of Radiation Biology, 88, 430–438.

Harlow T, Greaves C, White A, et al. (2004). Randomised controlled trial of magnetic bracelets for relieving pain in osteoarthritis of the hip and knee. BMJ, 329, 1450–1454.

Luo, Y. (2016). The effect of static high magnetic field on chronic epididymitis Guangzhou University of Chinese Medicine, Guangzhou, China.

Erişimadresi:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201701&filename=1016276944.nh

Kovács-Bálint Z, Csathó A, László JF, et al. (2011). Exposure to an inhomogeneous static magnetic field increases thermal pain threshold in healthy human volunteers. Bioelectromagnetics, 32, 131–139.

Yayınlanan

12 Şubat 2026

Lisans

Lisans