Transkutanöz Elektriksel Sinir Stimülasyonu (Tens)
Özet
Transkutanöz elektriksel sinir stimülasyonu (TENS) uzun zamandır ağrının tedavisinde kullanılan bir fizik tedavi modalitesidir. TENS aygıtı ile oluşturulan belirli parametrelerdeki alçak frekanslı alternatif akım cilde yerleştirilen elektrotlar vasıtasıyla uygulanmaktadır. Etki mekanizması kapı kontrol teorisi, endojen opioid sistem aktivasyonu, çeşitli nörotransmitter ve reseptörlerin aracılık ettiği santral ve periferik mekanizmalar ile açıklanmaktadır. Kapı kontrol teorisi bunlar içerisinde en çok kabul gören mekanizmadır. Uygulanan TENS türüne göre faklı mekanizmalar devreye girerek analjeziyi sağlayabilir.
Referanslar
Vance CGT, Dailey DL, Chimenti RL, et al. Using TENS for Pain Control: Update on the State of the Evidence. Medicina (Kaunas). 2022 Sep 22;58(10):1332. doi: 10.3390/medicina58101332.
Johnson MI, Paley CA, Jones G, et al. Efficacy and safety of transcutaneous electrical nerve stimulation (TENS) for acute and chronic pain in adults: a systematic review and meta-analysis of 381 studies (the meta-TENS study). BMJ Open. 2022 Feb 10;12(2):e051073. doi: 10.1136/bmjopen-2021-051073.
Jones I, Johnson MI. Transcutaneous electrical nerve stimulation. Continuing Education in Anaesthesia Critical Care & Pain. 2009;9(4):130-135. doi:10.1093/BJACEACCP/MKP021
Teoli D, Dua A, An J. Transcutaneous Electrical Nerve Stimulation [Internet]. StatPearls. 2025. (05/12/2025 tarihinde https://www.ncbi.nlm.nih.gov/books/NBK537188/ adresinden ulaşılmıştır).
Melzack R, Wall PD. Pain mechanisms: a new theory. Science (New York, NY). 1965;150(3699):971–979. doi:10.1126/SCIENCE.150.3699.971
Gildenberg PL. History of Electrical Neuromodulation for Chronic Pain. Pain Medicine. 2006;7(suppl_1):S7–S13. doi:10.1111/J.1526-4637.2006.00118.X
Vance CGT, Dailey DL, Rakel BA, Sluka KA. Using TENS for pain control: the state of the evidence. Pain management. 2014;4(3):197. doi:10.2217/PMT.14.13
Johnson MI. Resolving Long-Standing Uncertainty about the Clinical Efficacy of Transcutaneous Electrical Nerve Stimulation (TENS) to Relieve Pain: A Comprehensive Review of Factors Influencing Outcome. Medicina. 2021; 57(4):378. doi:10.3390/MEDICINA57040378
Johnson PM. Transcutaneous Electrical Nerve Stimulation: Mechanisms, Clinical Application and Evidence. Reviews in Pain. 2007;1(1):7. doi:10.1177/204946370700100103
Machi A, Patel A, Ottestad E. Nerve stimulation and neuromodulation for painful nerves: a narrative review. International Orthopaedics. 2025;49(5):989–996. doi:10.1007/S00264-025-06498-0
Carly M. Webb, Charlotte E. Steeds. The anatomy and physiology of pain. Clinics in Integrated Care. 2022;14(5):100115. doi:10.1016/J.INTCAR.2022.100115
Raffaeli W, Arnaudo E. Pain as a disease: an overview. Journal of Pain Research. 2017;10:2003. doi:10.2147/JPR.S138864
Karcz M, Abd-Elsayed A, Chakravarthy K, et al. Pathophysiology of Pain and Mechanisms of Neuromodulation: A Narrative Review (A Neuron Project). Journal of Pain Research. 2024;17:3757–3790. doi:10.2147/JPR.S475351
Kağan Yücel R, Özdemir F, Ural Ulucan H, Hizli Yücel S. Endogenous opioid system in pain management: Mechanisms, influences, and clinical implications. Journal of Experimental and Clinical Medicine (Turkey). 2025;42(2):207–211. doi:10.52142/OMUJECM.42.2.15
Ferdousi M, Finn DP. Stress-induced modulation of pain: Role of the endogenous opioid system. Progress in Brain Research. 2018;239:121–177. doi:10.1016/BS.PBR.2018.07.002
Reddi D, Curran N, Stephens R. An introduction to pain pathways and mechanisms. British journal of hospital medicine. 2013, 74.Sup12: C188-C191. doi:10.12968/HMED.2013.74.SUP12.C188
Patel P, Green M, Tram J, et al. Latest Advancements in Transcutaneous Electrical Nerve Stimulation (TENS) and Electronic Muscle Stimulation (EMS): Revisiting an Established Therapy with New Possibilities. Journal of Pain Research. 2025;18:137–153. doi:10.2147/JPR.S493162
Sluka KA, Vance CGT, Lisi TL. High-frequency, but not low-frequency, transcutaneous electrical nerve stimulation reduces aspartate and glutamate release in the spinal cord dorsal horn. Journal of Neurochemistry. 2005;95(6):1794–1801. doi:10.1111/J.1471-4159.2005.03511.X
Sluka KA, Bjordal JM, Marchand S, Rakel BA. What Makes Transcutaneous Electrical Nerve Stimulation Work? Making Sense of the Mixed Results in the Clinical Literature. Physical Therapy. 2013;93(10):1397. doi:10.2522/PTJ.20120281
Léonard G, Cloutier C, Marchand S. Reduced Analgesic Effect of Acupuncture-like TENS but Not Conventional TENS in Opioid-Treated Patients. The Journal of Pain. 2011;12(2):213–221. doi:10.1016/J.JPAIN.2010.07.003
Gozani SN. Remote analgesic effects of conventional transcutaneous electrical nerve stimulation: A scientific and clinical review with a focus on chronic pain. Journal of Pain Research. 2019;12:3185–3201. doi:10.2147/JPR.S226600
Han JS, Chen XH, Sun SL, et al. Effect of low- and high-frequency TENS on Met-enkephalin-Arg-Phe and dynorphin A immunoreactivity in human lumbar CSF. Pain. 1991;47(3):295–298. doi:10.1016/0304-3959(91)90218-M
Salar G, Job I, Mingrino S, et al. Effect of transcutaneous electrotherapy on CSF beta-endorphin content in patients without pain problems. Pain. 1981;10(2):169–172. doi:10.1016/0304-3959(81)90192-5
Leonard G, Goffaux P, Marchand S. Deciphering the role of endogenous opioids in high-frequency TENS using low and high doses of naloxone. Pain. 2010;151(1):215–219. doi:10.1016/J.PAIN.2010.07.012
Sluka KA, Deacon M, Stibal A, et al. Spinal blockade of opioid receptors prevents the analgesia produced by TENS in arthritic rats. The Journal of pharmacology and experimental therapeutics. 1999;289(2):840–846. http://www.ncbi.nlm.nih.gov/pubmed/10215661
Kalra A, Urban MO, Sluka KA. Blockade of opioid receptors in rostral ventral medulla prevents antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS). The Journal of pharmacology and experimental therapeutics. 2001;298(1):257–263. http://www.ncbi.nlm.nih.gov/pubmed/11408550
Sjölund BH, Eriksson MBE. The influence of naloxone on analgesia produced by peripheral conditioning stimulation. Brain Research. 1979;173(2):295–301. doi:10.1016/0006-8993(79)90629-2
Radhakrishnan R, King EW, Dickman JK, et al. Spinal 5-HT2 and 5-HT3 receptors mediate low, but not high, frequency TENS-induced antihyperalgesia in rats. Pain. 2003;105(1–2):205. doi:10.1016/S0304-3959(03)00207-0
Radhakrishnan R, Sluka KA. Spinal muscarinic receptors are activated during low or high frequency TENS-induced antihyperalgesia in rats. Neuropharmacology. 2003;45(8):1111. doi:10.1016/S0028-3908(03)00280-6
Maeda Y, Lisi TL, Vance CGT, Sluka KA. Release of GABA and activation of GABAA in the spinal cord mediates the effects of TENS in rats. Brain research. 2007;1136(1):43. doi:10.1016/J.BRAINRES.2006.11.061
de Oliveira HU, dos Santos RS, Malta IHS, et al. Investigation of the Involvement of the Endocannabinoid System in TENS-Induced Antinociception. Journal of Pain. 2020;21(7–8):820–835. doi:10.1016/j.jpain.2019.11.009
Mokhtari T, Ren Q, Li N, et al. Transcutaneous Electrical Nerve Stimulation in Relieving Neuropathic Pain: Basic Mechanisms and Clinical Applications. Current Pain and Headache Reports. 2020;24(4):14-. doi:10.1007/S11916-020-0846-1/TABLES/1
Sabino GS, Santos CMF, Francischi JN, de Resende MA. Release of Endogenous Opioids Following Transcutaneous Electric Nerve Stimulation in an Experimental Model of Acute Inflammatory Pain. Journal of Pain. 2008;9(2):157–163. doi:10.1016/j.jpain.2007.09.003