Doğru Akım (Galvanik) ve İyontoforez

Yazarlar

Özet

Doğru akım (galvanik akım), tek yönlü ve sabit şiddette akan elektrik akımı olup fizik tedavi ve rehabilitasyon alanında uzun yıllardır kullanılan temel elektroterapi modalitelerinden biridir. Doğru akımın biyolojik dokular üzerindeki etkileri; elektrik alanına maruziyet sonucu oluşan elektrolitik reaksiyonlar, hücre membranlarında ve doku düzeyinde gelişen polarizasyon süreçleri ile buna eşlik eden lokal vasküler yanıtların indüklenmesi yoluyla ortaya çıkmaktadır. Bu özellikleri sayesinde ağrı kontrolü, kas uyarımı, dolaşımın artırılması ve doku iyileşmesinin desteklenmesi gibi klinik amaçlarla kullanılmaktadır. Doğru akımın önemli uygulama alanlarından biri olan iyontoforez, elektriksel itme kuvvetinden yararlanarak iyonize ilaçların deri yoluyla hedef dokuya iletilmesini sağlamaktadır. Bu yöntem, invaziv olmayan yapısı sayesinde lokal ilaç uygulamalarında güvenli ve etkili bir alternatif sunmaktadır. İyontoforez; inflamasyon, ağrı, yumuşak doku lezyonları ve aşırı terleme gibi birçok klinik durumda tercih edilmektedir. Uygulamanın etkinliği; kullanılan akım yoğunluğu, ilaç tipi, polarite seçimi ve uygulama süresi gibi parametrelere bağlıdır. Bu bölümde doğru akımın biyofiziksel temelleri, fizyolojik etkileri, klinik kullanım alanları ve iyontoforez uygulamalarının prensipleri güncel literatür ışığında ele alınmıştır.

Referanslar

Arygunartha, G., Prayoga, K., & Setianingsih, N. (2023). The level of electrical resistance on electrolyte materials. World Journal of Advanced Research and Reviews. 2023;19(03): 132–136. doi:10.30574/wjarr.2023.19.3.1767

Demtröder W. Electric Currents. In: Electrodynamics and Optics. Undergraduate Lecture Notes in Physics. Springer, Cham; 2019. doi:10.1007/978-3-030-02291-4_2.

Glisson T.H. Current, Voltage, and Resistance. In: Introduction to Circuit Analysis and Design. Springer, Dordrecht. 2011. doi:10.1007/978-90-481-9443-8_2

Ma S.X. Low Electrical Resistance Properties of Acupoints: Roles of NOergic Signaling Molecules and Neuropeptides in Skin Electrical Conductance. Chinese journal of integrative medicine. 2021;27(8): 563–569. doi:10.1007/s11655-021-3318-5

Hunckler J, de Mel A. A current affair: electrotherapy in wound healing. Journal of Multidisciplinary Healthcare. 2017;10: 179-194. doi: 10.2147/JMDH.S127207

NASA. Electric current. [Online] https://ntrs.nasa.gov/api/citations/19690003108/downloads/19690003108.pdf [Accessed: 5th December 2025]

Barutçu B. Elektrik akımlarının doku üzerindeki etkileri Dursun Ş (ed) Biyofizik Ders Kitabı içinde. İstanbul Üniversitesi Basım ve Yayınevi; 2010. p. 405-430.

Dzhumamukhambetov N, Yashkov V, Kulzhanov D, et al. Transport of directcurrent electricity: research and prospects. Bulletin of Electrical Engineering and Informatics. 2025;14(4): 2488-2496. doi:10.11591/eei.v14i4.9463

Eisenberg RS. Current flow in nerves and mitochondria: an electro-osmotic approach. Biomolecules. 2025; 15(8): 1063. https://doi.org/10.3390/biom15081063

Lamberti P, Sieni E, Sundararajan R. Design of electrical characterization method for electroporation-treated biological tissues. Designs. 2023;7(2): 35. doi:10.3390/designs7020035

Matter L, Abdullaeva O, Shaner S, et al. Bioelectronic direct current stimulation at the transition between reversible and irreversible charge transfer. Advanced Science. 2024;11: 2306244. doi:10.1002/advs.202306244

Leal, J., Jedrusik, N., Shaner, S., et al. SIROF stabilized PEDOT/PSS allowsbiocompatible and reversible direct current stimulation capable of driving electrotaxis in cells. Biomaterials, 2021;275: 120949. doi: 10.1016/j.biomaterials.2021.120949

Vargas, F. Accommodation of Normal and Pathologic Pulp Nerves. Journal of Dental Research. 1956;35: 723-733. doi:10.1177/00220345560350051001

Stagg C, Antal A, Nitsche M. Physiology of Transcranial Direct Current Stimulation. The Journal of ECT. 2018;34(3): 144–152. doi:10.1097/yct.0000000000000510

Sengupta A, Gupta S, Sharda A, et al. Effect of low frequency electrical current on the biophysical and molecular properties of cancer cells. International Journal of Cancer and Clinical Research. 2021;8: 145. doi:10.23937/2378-3419/1410145

Gaugain G, Quéguiner L, Bikson M, et al. Quasi-static approximation error of electric field analysis for transcranial current stimulation. Journal of Neural Engineering. 2023;20(1): 016027. doi:10.1088/1741-2552/acb14d

Wang B, Peterchev AV, Gaugain G, et al. Quasistatic approximation in neuromodulation. Journal of neural engineering. 2024;21(4). doi:10.1088/1741-2552/ad625e

Eisenberg RS. Maxwell equations without a polarization field, using a paradigm from biophysics. Entropy. 2021, 23(2): 172. doi:10.3390/e23020172

Gratiy S, Halnes G, Denman D, et al. From Maxwell's equations to the theory of current‐source density analysis. The European Journal of Neuroscience. 2017;45: 1013-1023. doi:10.1111/ejn.13534.

Saturnino G, Thielscher A, Madsen K, et al. A principled approach to conductivity uncertainty analysis in electric field calculations. NeuroImage. 2019;188:821-834. doi:10.1016/j.neuroimage.2018.12.053.

Balduino R, Mcdermott B, Porter E, et al. Feasibility of water content-based dielectric characterisation of biological tissues using mixture models. IEEE Transactions on Dielectrics and Electrical Insulation. 2019;26: 187-193. doi:10.1109/tdei.2018.007412.

Šmerc R, Ramirez D, Mahnič-Kalamiza S, et al. A multiscale computational model of skeletal muscle electroporation validated using in situ porcine experiments. IEEE Transactions on Biomedical Engineering, 2023;70: 1826-1837. doi:10.1109/tbme.2022.3229560

Etoz S, Brace C. Development of water content dependent tissue dielectric property models. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology. 2019;3: 105-110. doi:10.1109/jerm.2018.2881692

Leal J, Shaner S, Jedrusik N, et al. Electrotaxis evokes directional separation of co-cultured keratinocytes and fibroblasts. Scientific Reports. 2023;13: 11444. doi:10.1038/s41598-023-38664-y

Naggay BK, Farahani SK, Gao X. et al. Direct current electrical fields inhibit cancer cell motility in microchannel confinements. Scientific Reports. 2025;15: 4605. doi:10.1038/s41598-025-87737-7

Bertagna F, Lewis R, Silva S, et al. Effects of electromagnetic fields on neuronal ion channels: a systematic review. Annals of the New York Academy of Sciences. 2021;1499(1): 82-103. doi:10.1111/nyas.14597

Kulkarni S, Tebar F, Rentero C, et al. Competing signaling pathways controls electrotaxis. iScience. 2025;28(5): 112329. doi:10.1016/j.isci.2025.112329

Oh, B. Phosphoinositides and intracellular calcium signaling: novel insights into phosphoinositides and calcium coupling as negative regulators of cellular signaling. Experimental & Molecular Medicine. 2023;55(8): 1702-1712. doi:10.1038/s12276-023-01067-0

Piccoli M, Barbato L, Maiorana N, et al. Direct current stimulation (dcs) modulates lipid metabolism and intercellular vesicular trafficking in SHSY-5Y cell line: ımplications for parkinson's disease. Journal of Neurochemistry. 2025; 169(2): e70014. doi: 10.1111/jnc.70014.

Liu M, Xie D, Zeng H, et al. Direct-current electric field stimulation promotes proliferation and maintains stemness of mesenchymal stem cells. BioTechniques. 2023;74(6): 293-301.

Bianconi S, Leppik L, Oppermann E, et al. Direct current electrical stimulation shifts thp-1-derived macrophage polarization towards pro-regenerative M2 phenotype. International Journal of Molecular Sciences. 2024; 25(13): 7272. doi:10.3390/ijms25137272.

Kostopoulos D, Rizopoulos K, McGilvrey J, et al. An open-label comparative study of the impact of two types of electrical stimulation (direct current neuromuscular electrical stimulation and transcutaneous electrical stimulation) on physical therapy treatment of diabetic peripheral neuropathy. Journal of Diabetes Research. 2025: 9970124. doi: 10.1155/jdr/9970124

Euskirchen N, Nitsche MA, van Thriel C. Direct current stimulation in cell culture systems and brain slices-new approaches for mechanistic evaluation of neuronal plasticity and neuromodulation: state of the art. Cells. 2021;10(12) :3583. doi:10.3390/cells10123583

Martín D, Bocio-Nuñez J, Scagliusi SF, et al. DC electrical stimulation enhances proliferation and differentiation on N2a and MC3T3 cell lines. Journal of Biological Engineering. 2022;16(1): 27. doi:10.1186/s13036-022-00306-8

David SL, Absolom DR, Smith CR, et al. Effect of low level direct current on in vivo tumor growth in hamsters. Cancer Research. 1985;45(11 Pt 2): 5625-5631.

Reinauer S, Neusser A, Schauf G, et al. Iontophoresis with alternating current and direct current offset (AC/DC iontophoresis): a new approach for the treatment of hyperhidrosis. British Journal of Dermatology. 1993;129(2): 166-169. doi:10.1111/j.1365-2133.1993.tb03521.x

Wang Y, Zeng L, Song W, et al. Influencing factors and drug application of iontophoresis in transdermal drug delivery: an overview of recent progress. Drug Delivery Translation Research. 2022;12(1): 15-26. doi:10.1007/s13346-021-00898-6

Kamalabadi M, Ghoorchian A, Derakhshandeh K, Haddadi R. Controlled transdermal delivery of oxycodone by pulsed iontophoresis: In vitro and in vivo evaluations. Therapeutic Delivery. 2025;16(9): 807-818. doi:10.1080/20415990.2025.2534322

Karpiński TM. Selected medicines used in iontophoresis. Pharmaceutics. 2018;10(4): 204. doi:10.3390/pharmaceutics10040204

González Iglesias LG, Messaoudi S, Kalia YN. Non-invasive iontophoretic delivery of cytochrome c to the posterior segment and determination of ıts ocular biodistribution. Pharmaceutics. 2022;14(9): 1832. doi:10.3390/pharmaceutics14091832

Wei D, Pu N, Li SY, et al. Application of iontophoresis in ophthalmic practice: an innovative strategy to deliver drugs into the eye. Drug Delivery. 2023;30(1): 2165736. doi:10.1080/10717544.2023.2165736

Min JWS, Saeed N, Coene A, Adriaens M, Ceelen W. Electromotive enhanced drug administration in oncology: principles, evidence, current and emerging applications. Cancers (Basel). 2022;14(20): 4980. doi:10.3390/cancers14204980

Wang T, Kleiven S, Li X. Electroosmosis based novel treatment approach for cerebral edema. IEEE Transactions and Biomedical Engineering. 2021;68(9): 2645-2653. doi:10.1109/TBME.2020.3045916

Martin-Vega FJ, Vinolo-Gil MJ, Gonzalez-Medina G, et al. Use of iontophoresis with corticosteroid in carpal tunnel syndrome: systematic review and meta-analysis. International Journal of Environmental Research. 2023;20(5): 4287. doi:10.3390/ijerph20054287

Leduc BE, Caya J, Tremblay S, et al. Treatment of calcifying tendinitis of the shoulder by acetic acid iontophoresis: a double-blind randomized controlled trial. Archives of Physical Medicine and Rehabilitation. 2003;84(10): 1523-1527. doi:10.1016/s0003-9993(03)00284-3

Meena R, Kumar T, Reinai, T. Fentanyl iontophoresis can facilitate early physiotherapy in post surgicalacute pain: a literature review. International Journal of Health Sciences and Research. 2021; 11(7): 137-143. doi:10.52403/ijhsr.20210720

Bertolucci LE. Introduction of antiinflammatory drugs by lontophoresis: double blind study. Journal of Orthopaedic & Sports Physical Therapy. 1982;4(2): 103-108. doi:10.2519/jospt.1982.4.2.103

Ibrahim NA, Abdel Raoof NA, Mosaad DM, et al. Effect of magnesium sulfate iontophoresis on myofascial trigger points in the upper fibres of the trapezius. The Journal of Taibah University Medical Sciences. 2021;16(3): 369-378. doi:10.1016/j.jtumed.2020.12.015

Kim DH, Kim TH, Lee SH, et al. Treatment of palmar hyperhidrosis with tap water iontophoresis: a randomized, sham-controlled, single-blind, and parallel-designed clinical trial. Annals of Dermatology. 2017;29(6): 728-734. doi:10.5021/ad.2017.29.6.728

Fernández-Guarino M, Bacci S, Pérez González LA, et al. The role of physical therapies in wound healing and assisted scarring. International Journal of Molecular Sciences. 2023;24(8): 7487. doi:10.3390/ijms24087487

Krueger E, Fontoura J, Scheeren E, et al. Iontophoresis: principles andapplications. Fisioterapia em Movimento. 2014;27: 469-481. doi:10.1590/0103-5150.027.003.ar02

Zuo J, Du L, Li M, et al. Transdermal enhancement effect and mechanism of iontophoresis for non-steroidal anti-inflammatory drugs. The International Journal of Pharmaceutics. 2014;466(1-2): 76-82. doi:10.1016/j.ijpharm.2014.03.013

Ibrahim NA, Hamdy HA, Elbanna RHM, Mohamed DMA, Ali EA. Transdermal iontophoresis versus high power pain threshold ultrasound in mechanical neck pain: a randomized controlled trial. Journal of Orthopaedic Surgery and Research. 2024;19(1): 658. doi:10.1186/s13018-024-05078-z

Alibegashvili M, Loladze M, Gabisonia T, et al. Hyaluronidase ointment in treatment of hypertrophic scars. Georgian Medical News. 2020;(308): 140-143.

Lasisi K, Onigbinde A, Ayinla S, et al. Comparative effects of isometric quadriceps training, glucosamine and chondroitin sulphate iontophoresis on pain intensity and physical functions of patients with knee osteoarthritis. European Journal of Medical and Health Research, 2024;2(4): 183-194. doi:10.59324/ejmhr.2024.2(4).25

Gomez I, Szabó A, Pap L Jr, et al. In vivo calcium and phosphate iontophoresis for the topical treatment of osteoporosis. Physical Theraphy. 2012;92(2): 289-297. doi:10.2522/ptj.20100400

da Rocha FR, Haupenthal DPDS, Zaccaron RP, et al. Therapeutic effects of iontophoresis with gold nanoparticles in the repair of traumatic muscle injury. Journal of Drug Targeting. 2020;28(3): 307-319. doi:10.1080/1061186X.2019.1652617

Pirri C, Manocchio N, Sorbino A, et al. Percutaneous electrolysis for musculoskeletal disorders management in rehabilitation settings: a systematic review. Healthcare (Basel). 2025;13(15) :1793. doi:10.3390/healthcare13151793

Bastos CM, Rocha F, Gomes N, et al. The challenge in combining pelotherapy and electrotherapy (iontophoresis) in one single therapeutic modality. Applied Sciences. 2022;12(3): 1509. doi:10.3390/app12031509

Başkurt F, Ozcan A, Algun C. Comparison of effects of phonophoresis and iontophoresis of naproxen in the treatment of lateral epicondylitis. Clinical Rehabilitation. 2003;17(1): 96-100. doi:10.1191/0269215503cr588oa

Buyuksireci DE, Turk AC. Evaluation of the effectiveness of dexamethasone iontophoresis in patients with subacromial impingement syndrome. The Journal of Orthopaedic Science. 2021;26(5): 786-791. doi:10.1016/j.jos.2020.09.007

Emelin Y, Konchugova T, Marchenkova L. Evaluation of the effectiveness of combined calcium-phosphorus iontophoresis and interferential therapy in children with adolescent tibial osteochondrosis. Vrach. 2025;36(6): 89-92. doi: 10.29296/25877305-2025-06-20

Dakowicz A, Dzięcioł-Anikiej Z, Hryniewicz A, et al. Evaluation of the effectiveness of iontophoresis with perskindol gel in patients with osteoarthritis of the knee joints. International Journal of Environmental Research and Public Health. 2022;19(14): 8489. doi:10.3390/ijerph19148489

Ashish G. A study to find the effectiveness of iontophoresis with open kinematic chain exercises in pesanserine bursitis in sports persons. International Journal of Medical and Exercise Science. 2021;7: 916-926. doi:10.36678/ijmaes.2021.v07i01.001

Amirjani N, Ashworth NL, Watt MJ, et al. Corticosteroid iontophoresis to treat carpal tunnel syndrome: a double-blind randomized controlled trial. Muscle Nerve. 2009;39(5): 627-633. doi:10.1002/mus.21300

Pérez-Merino L, Casajuana M, Bernal G, et al. Evaluation of theeffectiveness of three physiotherapeutic treatments for subacromial impingement syndrome: a randomised clinical trial. Physiotherapy. 2016;102(1): 57-63. doi:10.1016/j.physio.2015.01.010

Yayınlanan

12 Şubat 2026

Lisans

Lisans