Bitki Doku Kültürlerinde Biyoreaktör Sistemleri

Yazarlar

Mansur Hakan Erol

Özet

Bitki doku kültürlerinde biyoreaktör sistemleri, geleneksel katı ve yarı katı in vitro kültür yöntemlerine kıyasla daha yüksek üretim kapasitesi, otomasyon ve maliyet etkinliği sunan modern üretim platformları olarak öne çıkmaktadır. Bu sistemler; nadir, ekonomik değeri yüksek ve tıbbi öneme sahip bitkilerin hızlı çoğaltımı, klonal materyal üretimi ve sekonder metabolit sentezi açısından önemli avantajlar sağlamaktadır. Kontrollü kültür koşulları sayesinde besin maddeleri, oksijen ve bitki büyüme düzenleyicilerinin homojen dağılımı mümkün olmakta; iş gücü ihtiyacı ve üretim maliyetleri önemli ölçüde azaltılmaktadır. Günümüze kadar karıştırmalı tank, hava kaldırmalı, kabarcıklı kolon, dalga ve geçici daldırma biyoreaktörleri gibi farklı sistemler geliştirilmiştir. Özellikle geçici daldırma biyoreaktörleri, eksplantların besin ortamına aralıklı olarak maruz bırakılması prensibiyle çalışarak hiperhidrisiteyi azaltmakta ve besin ortamının daha verimli kullanılmasını sağlamaktadır. Biyoreaktör sistemleri, mikroçoğaltım, somatik embriyogenez ve sekonder metabolit üretiminde çoğalma oranlarını birkaç kat artırabilmekte; alan, enerji ve işçilikten tasarruf sağlamaktadır. 1980’li yıllardan itibaren geliştirilen otomatik sistemler, günümüzde standartlaştırılmış ticari ve araştırma amaçlı biyoreaktör uygulamalarının temelini oluşturmakta ve bitki doku kültürlerinin endüstriyel ölçekte uygulanabilirliğini güçlendirmektedir.

Referanslar

Aka Kaçar, Y. A., Dönmez, D., Biçen, B., Erol, M. H., Şimsek, Ö., Mendi, Y. Y., 2020. Micropropagation of Spathiphyllum with temporary immersion bioreactor system. Turkish Journal of Agriculture - Food Science and Technology, 8(5), 1195–1200. https://doi.org/10.24925/turjaf.v8i5.1195-1200.3364

Aka Kaçar, Y., Biçen, B., Şimşek, Ö., Dönmez, D., Erol, M. H., 2020. Evaluation and comparison of a new type of temporary immersion system (tis) bioreactors for myrtle (Myrtus communis L.). Applied Ecology & Environmental Research, 18(1).

Akita, M., Takayama, S., 1994. Stimulation of potato (Solanum tuberosum L.) tuberization by semicontinuous liquid medium surface level control. Plant Cell Reports, 13, 184–187.

Alves, G. L., Pinheiro, M. V. M., Marinho-Dutra, T. R., da Silva Vieira, K., de Assis Figueiredo, F. A. M. M., Ferraz, T. M., de Oliveira Reis, F., 2024. Photoautotrophic potential and photosynthetic competence in Ananas comosus [L]. Merr. cultivar Turiaçu in in vitro culture systems. In Vitro Cellular & Developmental Biology - Plant, 60(1), 131–146.

Arano-Avalos, S., Gómez-Merino, F. C., Mancilla-Álvarez, E., Sánchez-Páez, R., Bello-Bello, J. J., 2020. An efficient protocol for commercial micropropagation of malanga (Colocasia esculenta L. Schott) using temporary immersion. Scientia Horticulturae, 261, 108998.

Arigundam, U., Variyath, A. M., Siow, Y. L., Marshall, D., Debnath, S. C., 2020. Liquid culture for efficient in vitro propagation of adventitious shoots in wild Vaccinium vitis-idaea ssp. minus (lingonberry) using temporary immersion and stationary bioreactors. Scientia Horticulturae, 264, 109199.

Ávila-Hernández, J. G., Aguilar-Zárate, P., Carrillo-Inungaray, M. L., Michel, M. R., Wong-Paz, J. E., Muñiz-Márquez, D. B., Martínez-Ávila, G. C. G., 2022. The secondary metabolites from Beauveria bassiana PQ2 inhibit the growth and spore germination of Gibberella moniliformis LIA. Brazilian Journal of Microbiology, 53(1), 143–152.

Bello-Bello, J. J., Schettino-Salomón, S., Ortega-Espinoza, J., Spinoso-Castillo, J. L., 2021. A temporary immersion system for mass micropropagation of pitahaya (Hylocereus undatus). 3 Biotech, 11(10), 437.

Bulbarela-Marini, J. E., Gómez-Merino, F. C., Galindo-Tovar, M. E., Pastelín-Solano, M. C., Murguía-González, J., Núñez-Pastrana, R., Castañeda-Castro, O., 2023. Ratio of somaclonal variation and the phytohormonal content of Citrus × latifolia in three in vitro culture systems. Journal of Plant Growth Regulation, 42(6), 3356–3364.

Cao, Y., Qian, X., Yu, T., Jia, Q., Sarsaiya, S., Chen, J., 2024. Improving biomass and dendrobine-type total alkaloids (DTTAs) production of Dendrobium nobile through combining temporary immersion bioreactor system (TIBS) with endophyte MD33 elicitation. Plant Cell, Tissue and Organ Culture (PCTOC), 156(1), 9.

Cengiz, M., Aka Kaçar, Y., 2019. Micropropagation of some citrus rootstocks with classical and new generation tissue culture techniques. Turkish Journal of Agriculture—Food Science and Technology, 7(9), 1469–1478.

Cristina, M. A. M., Eucario, M. Á., Luis, S. C. J., Jabín, B. B. J., 2023. Evaluation of the effect of different culture systems on photomixotrophic capacity during in vitro multiplication of pitahaya (Hylocereus undatus). South African Journal of Botany, 159, 396–404.

Dewir, Y. H., Habib, M. M., Alaizari, A. A., Malik, J. A., Al-Ali, A. M., Al-Qarawi, A. A., Alwahibi, M. S., 2023. Promising application of automated liquid culture system and arbuscular mycorrhizal fungi for large-scale micropropagation of red dragon fruit. Plants, 12(5), 1037.

Erol, M. H., 2025. Micropropagation of banana using SETIS™ bioreactor: impact of nutrient medium replacement intervals on plant growth and medium stability. Plant Cell, Tissue and Organ Culture (PCTOC), 163(2), 1-14.

Erol, M. H., Dönmez, D., Biçen, B., Şimşek, Ö., Kaçar, Y. A., 2023. Modern approaches to in vitro clonal banana production: Next-generation tissue culture systems. Horticulturae, 9(10), 1154.

Espinosa-Leal, C., Puente-Garza, C. A., Gracia-Lara, S., 2018. In vitro plant tissue culture: means for production of biological active compounds. Planta, 248, 1–18.

Ferri, M., Dipalo, S. C., Bagni, N., Tassoni, A., 2011. Chitosan elicits mono-glucosylated stilbene production and release in fed-batch bioreactor cultures of grape cells. Food Chemistry, 124(4), 1473–1479.

Gago, D., Sánchez, C., Aldrey, A., Christie, C. B., Bernal, M. Á., Vidal, N., 2022. Micropropagation of plum (Prunus domestica L.) in bioreactors using photomixotrophic and photoautotrophic conditions. Horticulturae, 8(4), 286.

Garcia-Ramirez, Y., 2023. Temporary immersion system for in vitro propagation via organogenesis of forest plant species. Trees, 37(3), 611-626.

Georgiev, V., Schumann, A., Pavlov, A., Bley, T., 2014. Temporary immersion systems in plant biotechnology. Engineering in Life Sciences, 14, 607–621.

Gianguzzi, V., Sottile, F., 2024. Temporary immersion system as an innovative approach for in vitro propagation of Sorbus domestica L. Horticulturae, 10(2), 164.

Grzegorczyk-Karolak, I., Staniewska, P., Lebelt, L., Piotrowska, D. G., 2022. Optimization of cultivation conditions of Salvia viridis L. shoots in the Plantform bioreactor to increase polyphenol production. Plant Cell, Tissue and Organ Culture (PCTOC), 149(1), 269–280.

Jafernik, K., Kubica, P., Dziurka, M., Kulinowski, Ł., Korona-Głowniak, I., Elansary, H. O., Szopa, A., 2024. Comparative assessment of lignan profiling and biological activities of Schisandra henryi leaf and in vitro PlantForm bioreactor-grown culture extracts. Pharmaceuticals, 17(4), 442.

Kim, J. H., Han, J. E., Murthy, H. N., Kim, J. Y., Kim, M. J., Jeong, T. K., Park, S. Y., 2023. Production of secondary metabolites from cell cultures of Sageretia thea (Osbeck) MC Johnst. using balloon-type bubble bioreactors. Plants, 12(6), 1390.

Kumokita, R., Yoshida, T., Shirai, T., Kondo, A., Hasunuma, T., 2023. Aromatic secondary metabolite production from glycerol was enhanced by amino acid addition in Pichia pastoris. Applied Microbiology and Biotechnology, 107(24), 7391–7401.

Le, K. C., Johnson, S., Aidun, C. K., Egertsdotter, U., 2023. In vitro propagation of the blueberry ‘blue suede™’ (Vaccinium hybrid) in semi-solid medium and temporary immersion bioreactors. Plants, 12(15), 2752.

Lee, J. S., 1999. Micropropagation of Phalaenopsis by flower stalk-derived axillary bud culture. M.Sc. Thesis, Chungbuk National University, Korea.

Lopes, T., Correia, M., Pedrosa, A., Baltazar, E., Canhoto, J., Correia, S., 2022. Improved micropropagation of Prunus spp. rootstocks using temporary immersion systems. XXXI International Horticultural Congress (IHC2022): International Symposium on In Vitro Technology and Micropropagated Plants, 1359, 249–254.

Luna, C. V., Duarte, M. J., Brugnoli, E. A., Ayala, P. G., Espasandin, F. D., Bernardis, A. C., Sansberro, P. A., 2024. In vitro plantlet production of Ilex paraguariensis adult plants using BIT bioreactors. Plant Cell, Tissue and Organ Culture (PCTOC), 157(1), 1–12.

Maene, P., Debergh, P., 1985. Liquid medium additions to established tissue cultures to improve elongation and rooting in vivo. Plant Cell, Tissue and Organ Culture, 67, 25–35.

Makowski, W., Królicka, A., Tokarz, B., Szopa, A., Ekiert, H., Tokarz, K. M., 2023. Temporary immersion bioreactors as a useful tool for obtaining high productivity of phenolic compounds with strong antioxidant properties from Pontechium maculatum. Plant Cell, Tissue and Organ Culture (PCTOC), 153(3), 525–537.

Mamun, N. H., Egertsdotter, U., Aidun, C. K., 2015. Bioreactor technology for clonal propagation of plants and metabolite production. Frontiers in Biology, 10, 177–193.

Mancilla-Álvarez, E., Pérez-Sato, J. A., Núñez-Pastrana, R., Spinoso-Castillo, J. L., Bello-Bello, J. J., 2021. Comparison of different semi-automated bioreactors for in vitro propagation of taro (Colocasia esculenta L. Schott). Plants, 10(5), 1010.

Mancilla-Álvarez, E., Spinoso-Castillo, J. L., Schettino-Salomón, S. S., Bello-Bello, J. J., 2024. Temporary immersion systems induce photomixotrophism during in vitro propagation of agave Tobalá. 3 Biotech, 14(3), 74.

Méndez-Hernández, H. A., Galaz-Ávalos, R. M., Quintana-Escobar, A. O., Pech-Hoil, R., Collí-Rodríguez, A. M., Salas-Peraza, I. Q., Loyola-Vargas, V. M., 2023. In vitro conversion of Coffea spp. somatic embryos in SETIS™ bioreactor system. Plants, 12(17), 3055.

Mohammadpour Barough, A., Dianati Daylami, S., Fadavi, A., Vahdati, K., 2024. Enhancing Phalaenopsis orchid production: a comparative study of permanent and temporary immersion bioreactors. In Vitro Cellular & Developmental Biology - Plant, 1–15.

Murthy, H. N., Joseph, K. S., Paek, K. Y., Park, S. Y., 2023. Bioreactor systems for micropropagation of plants: present scenario and future prospects. Frontiers in Plant Science, 14, 1159588.

Orozco-Ortiz, C., Sánchez, L., Araya-Mattey, J., Vargas-Solórzano, I., Araya-Valverde, E., 2023. BIT® bioreactor increases in vitro multiplication of quality shoots in sugarcane (Saccharum spp. variety LAICA 04-809). Plant Cell, Tissue and Organ Culture (PCTOC), 152(1), 115–128.

Ozudogru, E. A., Karlik, E., Elazab, D., Lambardi, M., 2022. Establishment of direct organogenesis protocol for Arachis hypogaea cv. Virginia in liquid medium by temporary immersion system (TIS). Horticulturae, 8(12), 1129.

Paek, K. Y., Chakrabarty, D., Hahn, E. J., 2005. Application of bioreactor systems for large scale production of horticultural and medicinal plants. In: Liquid culture systems for in vitro plant propagation, Springer, Dordrecht, 95–116.

Paek, K. Y., Hahn, E. J., Son, S. H., 2001. Application of bioreactors for large-scale micropropagation systems of plants. In Vitro Cellular & Developmental Biology - Plant, 37(2), 149–157.

Peña-Rojas, G., Carhuaz-Condori, R., Andía-Ayme, V., Leon, V. A., Herrera-Calderon, O., 2022. Improved production of mashua (Tropaeolum tuberosum) microtubers MAC-3 morphotype in liquid medium using temporary immersion system (TIS-RITA®). Agriculture, 12(7), 943.

Ramírez-Mosqueda, M. A., Bello-Bello, J. J., 2021. SETIS™ bioreactor increases in vitro multiplication and shoot length in vanilla (Vanilla planifolia Jacks. ex Andrews). Acta Physiologiae Plantarum, 43(4), 52.

Ramos-Castellá, A., Iglesias-Andreu, L. G., Bello-Bello, J., Lee-Espinosa, H., 2014. Improved propagation of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. In Vitro Cellular & Developmental Biology - Plant, 50, 576–581.

Rico, S., Garrido, J., Sánchez, C., Ferreiro-Vera, C., Codesido, V., Vidal, N., 2022. A temporary immersion system to improve Cannabis sativa micropropagation. Frontiers in Plant Science, 13, 895971.

Roels, S., Escalona, M., Cejas, I., Noceda, C., Rodriguez, R., Canal, M. J., Debergh, P., 2005. Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell, Tissue and Organ Culture, 82, 57–66.

Rout, G. R., Samantharay, S., Das, P., 2000. In vitro manipulation and propagation of medicinal plants. Biotechnology Advances, 18, 91–120.

Saptari, R. T., Esyanti, R. R., Putranto, R. A., 2022. Daminozide enhances the vigor and steviol glycoside yield of stevia (Stevia rebaudiana Bert.) propagated in temporary immersion bioreactors. Plant Cell, Tissue and Organ Culture (PCTOC), 149(1), 257–268.

Shahid, M., Shahzad, A., Malik, A., Sahai, A. (Eds.), 2013. Recent trends in biotechnology and therapeutic applications of medicinal plants. Springer Science+Business Media, Dordrecht.

Şimşek, Ö., Dönmez, D., Sarıdaş, M. A., Acar, E., Kaçar, Y. A., Kargı, S. P., İzgü, T., 2023. In vitro and ex vitro propagation of Turkish myrtles through conventional and plantform bioreactor systems. PeerJ, 11, e16061.

Son, S. H., Choi, S. M., Choi, K. B., Lee, Y. H., Lee, D. S., Choi, M. S., Park, Y. G., 1999. Selection and proliferation of rapid growing cell lines from embryo derived cell cultures of yew tree (Taxus cuspidata Sieb. et Zucc). Biotechnology and Bioprocess Engineering, 4, 112–118.

Sota, V., Benelli, C., Çuko, B., Papakosta, E., Depaoli, C., Lambardi, M., & Kongjika, E. (2021). Evaluation of ElecTIS bioreactor for the micropropagation of Malus sylvestris (L.) Mill., an important autochthonous species of Albania. Horticultural Science, 48(1).

Szewczyk, A., Marino, A., Taviano, M. F., Cambria, L., Davì, F., Trepa, M., Miceli, N., 2023. Studies on the accumulation of secondary metabolites and evaluation of biological activity of in vitro cultures of Ruta montana L. in temporary immersion bioreactors. International Journal of Molecular Sciences, 24(8), 7045.

Takahashi, S., Matsubara, H., Yamagata, H., Morimoto, T., 1992. Micropropagation of virus free bulblets of Lilium longiflorum by tank culture. 1. Development of liquid culture method and large-scale propagation. Acta Horticulturae, 319, 83–88.

Takayama, S., Akita, M., 1994. The types of bioreactors used for shoots and embryos. Plant Cell, Tissue and Organ Culture, 39(2), 147–156.

Takayama, S., Misawa, M., 1981. Mass propagation of Begonia × hiemalis plantlets by shake culture. Plant and Cell Physiology, 22(3), 461–467.

Takloo, S. M., Kargar, S., Jalili, H., Babaei, A., Amrane, A., 2024. Novel approaches to improve lovastatin production in membrane gradostat bioreactor. Biocatalysis and Agricultural Biotechnology, 103273.

Tarraf, W., İzgü, T., Şimşek, Ö., Cicco, N., Benelli, C., 2024. Saffron in vitro propagation: An innovative method by temporary immersion system (TIS), integrated with machine learning analysis. Horticulturae, 10(5), 454.

Teisson, C., Alvard, D., 1995. A new concept of plant in vitro cultivation liquid medium: Temporary immersion. In: Current Issues in Plant Molecular and Cellular Biology. Current Plant Science and Biotechnology in Agriculture. Eds. M. Terzi, R. Cella, A. Falavigna. Dordrecht: Springer, 105–110.

Tisserat, B., Vandercook, C. E., 1985. Development of an automated plant culture system. Plant Cell, Tissue and Organ Culture, 5, 107–117.

Topcu, Ş., Çölgeçen, H., 2015. Bitki sekonder metabolitlerinin biyoreaktörlerde üretilmesi. Türk Bilimsel Derlemeler Dergisi, (2), 9–29.

Uma, S., Karthic, R., Kalpana, S., Backiyarani, S., 2023. Evaluation of temporary immersion bioreactors for in vitro micropropagation of banana (Musa spp.) and genetic fidelity assessment using flow cytometry and simple-sequence repeat markers. South African Journal of Botany, 157, 553–565.

Uma, S., Karthic, R., Kalpana, S., Backiyarani, S., Saraswathi, M. S., 2021. A novel temporary immersion bioreactor system for large scale multiplication of banana (Rasthali AAB—Silk). Scientific Reports, 11(1), 20371.

Van Minh, T., 2022. Micropropagation of Mokara orchid by temporary immersion system technique. International Journal of Research and Innovation in Applied Science, 7(5), 54–58.

Vendrame, W. A., Xu, J., Beleski, D. G., 2023. Micropropagation of Brassavola nodosa (L.) Lindl. using SETIS™ bioreactor. Plant Cell, Tissue and Organ Culture (PCTOC), 153(1), 67–76.

Vilariño, S., Florido, M. D. C., García, J. L., Cantos, M., 2023. Effects of culture system and substrate composition on micropropagated plantlets of two varieties of Stevia rebaudiana Bert. Physiologia, 3(1), 74–85.

Watt, M. P., 2012. The status of temporary immersion system (TIS) technology for plant micropropagation. African Journal of Biotechnology, 11, 14025–14035.

Zhang, B., Niu, Z., Li, C., Hou, Z., Xue, Q., Liu, W., Ding, X., 2022. Improving large-scale biomass and total alkaloid production of Dendrobium nobile Lindl. using a temporary immersion bioreactor system and MeJA elicitation. Plant Methods, 18(1), 10.

Yayınlanan

14 Ocak 2026

Lisans

Lisans