Sekonder Metabolit Üretimi
Özet
Bitkiler, çevresel stres faktörlerine karşı geliştirdikleri savunma mekanizmalarıyla, primer metabolizma dışında yer alan ve doğrudan büyüme veya gelişmeyle ilişkili olmayan bileşikler üretmektedirler. Bu bileşikler “sekonder metabolitler” olarak adlandırılmaktadır. Sekonder metabolitler bitkilerin hayatta kalma stratejilerinde, patojenlere karşı savunmada, simbiyotik ilişkilerde ve çevresel adaptasyonlarında kritik roller üstlenmektedir. Sekonder metabolitler, sahip oldukları biyoaktiviteler nedeniyle farmasötik, kozmetik, tarım ve gıda endüstrisinde yoğun olarak kullanılmaktadır. Bu durum sekonder metabolitlerin önemini ve ticari değerini arttırmaktadır; ancak bu bileşiklerin doğal koşullarda üretimi sınırlıdır. Bu nedenle, bitki biyoteknolojisinin sunduğu imkanlar ile metabolit üretim miktarlarının artırılması, sürdürülebilir ve kontrollü bir alternatif olarak öne çıkmaktadır. Bitki biyoteknolojisi; hormon uygulamaları, elisitör kullanımı ve kültür ortamı optimizasyonu gibi yöntemlerle metabolit üretimini yönlendirme imkânı sunmaktadır. Mikrobiyal biyoteknoloji, genetik mühendisliği, metabolit mühendisliği ve doku kültürü teknikleri; çevresel değişkenlerden bağımsız, yıl boyu üretim sağlayan, genetik stabilitesi yüksek ve ölçeklenebilir sistemler sunmaktadır.
Referanslar
Abdel-Farid, I., Marghany, M., Rowezek, M., & Sheded, M., 2020. Effect of Salinity Stress on Growth and MetabolomicProfiling of Cucumis sativus and Solanum lycopersicum. Plants, 9. https://doi.org/10.3390/plants9111626.
Aguilar-Méndez, E. D., Monribot-Villanueva, J. L., Guerrero-Analco, J. A., & De-la-Peña, C., 2024. Chlorophyll deficiency in Agave angustifolia Haw.: unveiling the impact on secondary metabolite production. Planta, 260(4), 77.
Ahmad, N., Rab, A., Ahmad, N., 2016. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert).. Journal of photochemistry and photobiology. B, Biology, 154, 51-6. https://doi.org/10.1016/j.jphotobiol.2015.11.015
Ahmadpoor, F., Zare, N., Asghari, R., Sheikhzadeh, P., 2022. Sterilization protocols and the effect of plant growth regulators on callus induction and secondary metabolites production in in vitro cultures Melia azedarach L. AMB Express, 12. https://doi.org/10.1186/s13568-022-01343-8
Ahsan, S. M., Injamum-Ul-Hoque, M., Shaffique, S., Ayoobi, A., Rahman, M. A., Rahman, M. M., & Choi, H. W., 2024. Illuminating Cannabis sativa L.: The power of light in enhancing C. sativa growth and secondary metabolite production. Plants, 13(19), 2774.
Alamgir, A. N. M., 2018. Secondary Metabolites: Secondary Metabolic Products Consisting of C and H; C, H, and O; N, S, and P Elements; and O/N Heterocycles. Therapeutic Use of Medicinal Plants and their Extracts: Volume 2 (C. 74, ss. 165-309). Springer International Publishing. https://doi.org/10.1007/978-3-319-92387-1_3
Alcalde, M., Perez-Matas, E., Escrich, A., Cusido, R., Palazón, J., Bonfill, M., 2022. Biotic Elicitors in Adventitious and Hairy Root Cultures: A Review from 2010 to 2022. Molecules, 27. https://doi.org/10.3390/molecules27165253.
Ali, A., Mashwani, Z., Raja, N., Mohammad, S., Luna-Arias, J., Ahmad, A., Kaushik, P., 2023. Phytomediated selenium nanoparticles and light regimes elicited in vitro callus cultures for biomass accumulation and secondary metabolite production in Caralluma tuberculata. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1253193
Ali, A., Mohammad, S., Khan, M., Raja, N., Arif, M., Kamil, A., Mashwani, Z., 2019. Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculata. Artificial Cells, Nanomedicine, and Biotechnology, 47, 715 - 724. https://doi.org/10.1080/21691401.2019.1577884
Anjitha, K., Sameena, P., Puthur, J., 2021. Functional aspects of plant secondary metabolites in metal stress tolerance and their importance in pharmacology. Plant Stress. https://doi.org/10.1016/j.stress.2021.100038.
Arora, L., Narula, A., 2017. Gene Editing and Crop Improvement Using CRISPR-Cas9 System. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01932.
Badyal, S., Singh, H., Yadav, A. K., Sharma, S., Bhushan, I., 2020. Plant secondary metabolites and their uses. Plant Archives, 20(2), 3336-40.
Bakır, Ö., 2020. Sekonder metabolitler ve rolleri. Uluslararası Anadolu Ziraat Mühendisliği Bilimleri Dergisi, 2(4), 39-45. https://dergipark.org.tr/en/pub/uazimder/issue/57919/760126
Banaev, E. V., Erst, A. A., Khramova, E. P., Tomoshevich, M. A., Shaldaeva, T. M., 2024. In vitro culture of Atraphaxis frutescens (L.) K. Koch: effects of D-mannitol and pH on a propagation coefficient, secondary-metabolite levels, and antiradical activity. Plant Cell, Tissue and Organ Culture (PCTOC), 156(2), 46.
Baransel, G. Ş., Yücel, O., Yıldırım, E., Kalyon, G., Emik, S., Erol, A., Kara, N. T., 2025. Green synthesized silver nanoparticles enhance drought tolerance in cotton plants cultured in vitro. Physiology and Molecular Biology of Plants, 1-20.
Baydu, F. Y., Bektaş, E., 2025. Effects of Zinc Oxide Nanoparticles on Growth and Secondary Metabolite Accumulation in In Vitro Culture of Ocimum basilicum L. Journal of Apitherapy and Nature, 8(1), 37-60.
Bhambhani, S., Kondhare, K. R., Giri, A. P., 2021. Diversity in Chemical Structures and Biological Properties of Plant Alkaloids. Molecules, 26(11), 3374. https://doi.org/10.3390/molecules26113374
Bhaskar, R., Xavier, L., Udayakumaran, G., Kumar, D., Venkatesh, R., Nagella, P., 2021. Biotic elicitors: a boon for the in-vitro production of plant secondary metabolites. Plant Cell, Tissue and Organ Culture (PCTOC), 149, 7 - 24. https://doi.org/10.1007/s11240-021-02131-1.
Bhavaniramya, S., Vishnupriya, S., Al-Aboody, M. S., Vijayakumar, R., Baskaran, D., 2019. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain & Oil Science and Technology, 2(2), 49-55. https://doi.org/10.1016/j.gaost.2019.03.001
Bistgani, Z., Hashemi, M., Dacosta, M., Craker, L., Maggi, F., Morshedloo, M., 2019. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products. https://doi.org/10.1016/J.INDCROP.2019.04.055.
Borah, A., Singh, S., Chattopadhyay, R., Kaur, J., Bari, V., 2024. Integration of CRISPR/Cas9 with multi-omics technologies to engineer secondary metabolite productions in medicinal plant: Challenges and Prospects. Functional & integrative genomics, 24 6, 207 . https://doi.org/10.1007/s10142-024-01486-w.
Bulut, M., 2025. Chemodiversity of sulfur-containing metabolites emphasizing the ecophysiology of Allium plants and the developmental innovations in bulb formation. Current Opinion in Plant Biology, 85, 102724.
Cabañas-García, E., Areche, C., Gómez-Aguirre, Y., Bórquez, J., Muñoz, R., Cruz-Sosa, F., Balch, E., 2021. Biomass production and secondary metabolite identification in callus cultures of Coryphantha macromeris (Engelm.) Britton & Rose (Cactaceae), a traditional medicinal plant. South African Journal of Botany, 137, 1-9. https://doi.org/10.1016/j.sajb.2020.10.002
Cambaz, E., Çördük, N., 2023. Secondary Metabolite Production in Callus Culture of Verbascum scamandri Murb.. Acta Societatis Botanicorum Poloniae. https://doi.org/10.5586/asbp/165894
Caser, M., Chitarra, W., D'Angiolillo, F., Perrone, I., Demasi, S., Lovisolo, C., ... Scariot, V., 2019. Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Industrial Crops and Products, 129, 85-96.
Chakraborty, A., Mukherjee, S., Biswas, D., Santra, I., Halder, T., Alam, M. M., ... Ghosh, B., 2024. Elite chemotype selection, antipathogenic activities, secondary metabolite fingerprinting of in vitro regenerated Tinospora cordifolia (Willd.) Hook. f. & Thomson–a plant with multipurpose therapeutic significance. Plant Cell, Tissue and Organ Culture (PCTOC), 157(2), 48.
Chamkhi, I., Benali, T., Aanniz, T., Menyiy, N., Guaouguaou, F., Omari, N., El‐Shazly, M., Zengin, G., Bouyahya, A., 2021. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. Plant physiology and biochemistry: PPB, 167, 269-295. https://doi.org/10.1016/j.plaphy.2021.08.001.
Chattopadhyay, S., Farkya, S., Srivastava, A., Bisaria, V., 2002. Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnology and Bioprocess Engineering, 7, 138-149. https://doi.org/10.1007/BF02932911.
Chen, D., Mubeen, B., Hasnain, A., Rizwan, M., Adrees, M., Naqvi, S., Iqbal, S., Kamran, M., El-Sabrout, A., Elansary, H., Mahmoud, E., Alaklabi, A., Sathish, M., Din, G., 2022. Role of Promising Secondary Metabolites to Confer Resistance Against Environmental Stresses in Crop Plants: Current Scenario and Future Perspectives. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.881032.
Chrysargyris, A., Papakyriakou, E., Petropoulos, S. A., Tzortzakis, N., 2019. The combined and single effect of salinity and copper stress on growth and quality of Mentha spicata plants. Journal of hazardous materials, 368, 584-593.
Cuadra, P., Harborne, J. B., Waterman, P. G, 1997. Increases in surface flavonols and photosynthetic pigments in Gnaphalium luteo-album in response to UV-B radiation. Phytochemistry, 45(7), 1377-1383.
Çalışkan, T., Hatipoğlu, R., Kırıcı, S., 2019. Sekonder bitki metabolitlerinin in vitro koşullarda üretimi. Turkish Journal of Agriculture-Food Science and Technology, 7(7), 971-980. https://agrifoodscience.com/index.php/TURJAF/article/view/2447
Darigh, F., Iranbakhsh, A., Ardebili, Z. O., Ebadi, M., Hassanpour, H., 2022. Simulated microgravity contributed to modification of callogenesis performance and secondary metabolite production in Cannabis Indica. Plant Physiology and Biochemistry, 186, 157-168.
Del-Saz, N., Iglesias-Sanchez, A., Alonso-Forn, D., López-Gómez, M., Palma, F., Clemente‐Moreno, M., Fernie, A., Ribas-Carbó, M., Florez-Sarasa, I., 2022. The Lack of Alternative Oxidase 1a Restricts in vivo Respiratory Activity and Stress-Related Metabolism for Leaf Osmoprotection and Redox Balancing Under Sudden Acute Water and Salt Stress in Arabidopsis thaliana. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.833113.
Derbassi, N. B., Pedrosa, M. C., Heleno, S., Carocho, M., Ferreira, I. C., Barros, L., 2022. Plant volatiles: Using Scented molecules as food additives. Trends in Food Science & Technology, 122, 97-103.
Desta, B., Amare, G., 2021. Paclobutrazol as a plant growth regulator. Chemical and Biological Technologies in Agriculture, 8, 1-15. https://doi.org/10.1186/s40538-020-00199-z.
Devi, A., Devi, K., Devi, P., Devi, M., Das, S., 2023. Metabolic engineering of plant secondary metabolites: prospects and its technological challenges. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1171154.
Devrnja, N., Milutinović, M., Savić, J., 2022. When scent becomes a weapon—Plant essential oils as potent bioinsecticides. Sustainability, 14(11), 6847. https://www.mdpi.com/2071-1050/14/11/6847
Dubey, S., Shri, M., Gupta, A., Rani, V., Chakrabarty, D., 2018. Toxicity and detoxification of heavy metals during plant growth and metabolism. Environmental Chemistry Letters, 16, 1169-1192. https://doi.org/10.1007/s10311-018-0741-8.
Ejsmont, W., Kiss, A. K., Grzegorczyk-Karolak, I., 2025. Optimization of In Vitro Shoot Culture Parameters for Enhanced Biomass and Rosmarinic Acid Production in Salvia atropatana. Molecules, 30(12), 2654.
El Sherif, F., AlDayel, M., Ismail, M. B., Alrajeh, H. S., Younis, N. S., Khattab, S., 2023. Bio-stimulant for improving Simmondsia chinensis secondary metabolite production, as well as antimicrobial activity and wound healing abilities. Plants, 12(18), 3311.
Elshafie, H. S., Camele, I., Mohamed, A. A., 2023. A comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. International journal of molecular sciences, 24(4), 3266. https://www.mdpi.com/1422-0067/24/4/3266
Fàbregas, N., Fernie, A., 2019. The metabolic response to drought. Journal of Experimental Botany, 70, 1077–1085. https://doi.org/10.1093/jxb/ery437.
Faehnrich, B., Franz, C., Nemaz, P., Kaul, H.-P., 2021. Medicinal plants and their secondary metabolites − State of the art and trends in breeding, analytics and use in feed supplementation− with special focus on German chamomile. Journal of Applied Botany and Food Quality, 61-74 Pages. https://doi.org/10.5073/JABFQ.2021.094.008
Falsini, S., Ballantini, S., Pittella, A., Fico, G., Giuliani, C., Palchetti, E., ... Innocenti, M., 2025. Secondary Metabolites Composition and Their Histochemical Localization in the Fruit of Piper malgassicum Papini, Palchetti, Gori and Rota Nodari (Piperaceae). Chemistry & Biodiversity, e03289.
Fazili, M., Bashir, I., Ahmad, M., Yaqoob, U., Geelani, S., 2022. In vitro strategies for the enhancement of secondary metabolite production in plants: a review. Bulletin of the National Research Centre, 46. https://doi.org/10.1186/s42269-022-00717-z.
Ganie, I. B., Ahmad, Z., Shahzad, A., Zaushintsena, A., Neverova, O., Ivanova, S., ... Tahseen, S., 2022. Biotechnological intervention and secondary metabolite production in Centella asiatica L. Plants, 11(21), 2928.
Ge, W., Xin, J., Tian, R., 2023. Phenylpropanoid pathway in plants and its role in response to heavy metal stress: a review. Sheng wu Gong Cheng xue bao= Chinese Journal of Biotechnology, 39(2), 425-445. https://doi.org/10.13345/j.cjb.220338.
Ghasemi, S., Kumleh, H., Kordrostami, M., 2018. Changes in the expression of some genes involved in the biosynthesis of secondary metabolites in Cuminum cyminum L. under UV stress. Protoplasma, 256, 279 - 290. https://doi.org/10.1007/s00709-018-1297-y.
Ghosh, S., Adhikari, S., Adhikari, A., Hossain, Z., 2021. Contribution of plant miRNAome studies towards understanding heavy metal stress responses: Current Status and Future Perspectives. Environmental and Experimental Botany. https://doi.org/10.1016/j.envexpbot.2021.104705.
Golkar, P., Taghizadeh, M., 2018. In vitro evaluation of phenolic and osmolite compounds, ionic content, and antioxidant activity in safflower (Carthamus tinctorius L.) under salinity stress. Plant Cell, Tissue and Organ Culture (PCTOC), 134, 357-368. https://doi.org/10.1007/s11240-018-1427-4.
Goncharuk, E., Zagoskina, N., 2023. Heavy Metals, Their Phytotoxicity, and the Role of Phenolic Antioxidants in Plant Stress Responses with Focus on Cadmium: Review. Molecules, 28. https://doi.org/10.3390/molecules28093921.
Hachlafi, N. E., Aanniz, T., Menyiy, N. E., Baaboua, A. E., Omari, N. E., Balahbib, A., Shariati, M. A., Zengin, G., Fikri-Benbrahim, K., Bouyahya, A., 2023. In Vitro and In Vivo Biological Investigations of Camphene and Its Mechanism Insights: A Review. Food Reviews International, 39(4), 1799-1826. https://doi.org/10.1080/87559129.2021.1936007
Halder, M., Sarkar, S., Jha, S., 2019. Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Engineering in Life Sciences, 19, 880 - 895. https://doi.org/10.1002/elsc.201900058.
Han, T., Miao, G., 2024. Strategies, Achievements, and Potential Challenges of Plant and Microbial Chassis in the Biosynthesis of Plant Secondary Metabolites. Molecules, 29. https://doi.org/10.3390/molecules29092106.
Hasanuzzaman, M., Zhou, M., Shabala, S., 2023. How Does Stomatal Density and Residual Transpiration Contribute to Osmotic Stress Tolerance?. Plants, 12. https://doi.org/10.3390/plants12030494.
He, J., Yao, L., Pecoraro, L., Liu, C., Wang, J., Huang, L., Gao, W., 2022. Cold stress regulates accumulation of flavonoids and terpenoids in plants by phytohormone, transcription process, functional enzyme, and epigenetics. Critical Reviews in Biotechnology, 43, 680 - 697. https://doi.org/10.1080/07388551.2022.2053056.
Hill, C. R., Shafaei, A., Balmer, L., Lewis, J. R., Hodgson, J. M., Millar, A. H., Blekkenhorst, L. C., 2023. Sulfur compounds: From plants to humans and their role in chronic disease prevention. Critical Reviews in Food Science and Nutrition, 63(27), 8616-8638. https://doi.org/10.1080/10408398.2022.2057915
Humbal, A., Pathak, B., 2023. Harnessing nanoparticle-mediated elicitation in plant tissue culture: a promising approach for secondary metabolite production. Plant Cell, Tissue and Organ Culture (PCTOC), 155, 385 - 402. https://doi.org/10.1007/s11240-023-02612-5.
Hussein, R. A., El-Anssary, A. A., 2019. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. Herbal medicine, 1(3), 11-30.
Ibrahim, M. H., Chee Kong, Y., Mohd Zain, N. A., 2017. Effect of cadmium and copper exposure on growth, secondary metabolites and antioxidant activity in the medicinal plant Sambung Nyawa (Gynura procumbens (Lour.) Merr). Molecules, 22(10), 1623.
Inam, M., Attique, I., Zahra, M., Khan, A., Hahim, M., Hano, C., Anjum, S., 2023. Metal oxide nanoparticles and plant secondary metabolism: unraveling the game-changer nano-elicitors. Plant Cell, Tissue and Organ Culture (PCTOC), 155, 327 - 344. https://doi.org/10.1007/s11240-023-02587-3.
In-On, A., Thananusak, R., Ruengjitchatchawalya, M., Vongsangnak, W., Laomettachit, T., 2022. Construction of light-responsive gene regulatory network for growth, development and secondary metabolite production in Cordyceps militaris. Biology, 11(1), 71.
Iqbal, S., Begum, F., Rabaan, A. A., Aljeldah, M., Al Shammari, B. R., Alawfi, A., Alshengeti, A., Sulaiman, T., Khan, A., 2023. Classification and multifaceted potential of secondary metabolites produced by Bacillus subtilis group: A comprehensive review. Molecules, 28(3), 927. https://www.mdpi.com/1420-3049/28/3/927
Isah, T., Umar, S., Mujib, A., Sharma, M. P., Rajasekharan, P. E., Zafar, N., Frukh, A., 2018. Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell, Tissue and Organ Culture (PCTOC), 132(2), 239-265.
Jain, D., Bisht, S., Parvez, A., Singh, K., Bhaskar, P., Koubouris, G., 2024. Effective Biotic Elicitors for Augmentation of Secondary Metabolite Production in Medicinal Plants. Agriculture. https://doi.org/10.3390/agriculture14060796.
Jaiswal, D., Pandey-Rai, S., Agrawal, S., 2021. Untangling the UV-B radiation-induced transcriptional network regulating plant morphogenesis and secondary metabolite production. Environmental and Experimental Botany. https://doi.org/10.1016/j.envexpbot.2021.104655.
Jakovljević, D., Stanković, M., Warchoł, M., Skrzypek, E., 2022. Basil (Ocimum L.) cell and organ culture for the secondary metabolites production: a review. Plant Cell, Tissue and Organ Culture (PCTOC), 149, 61 - 79. https://doi.org/10.1007/s11240-022-02286-5.
Jamwal, K., Bhattacharya, S., Puri, S., 2018. Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. Journal of applied research on medicinal and aromatic plants, 9, 26-38.
Javed, R., Gürel, E., 2019. Salt stress by NaCl alters the physiology and biochemistry of tissue culture-grownStevia rebaudiana Bertoni. Turkish Journal of Agriculture and Forestry, 43(1), 11-20.
Kamarul Zaman, M. A., Azzeme, A. M., Ramle, I. K., Normanshah, N., Ramli, S. N., Shaharuddin, N. A., ... Abdullah, S. N. A., 2020. Induction, multiplication, and evaluation of antioxidant activity of Polyalthia bullata callus, a woody medicinal plant. Plants, 9(12), 1772.
Khalafalla, M., 2025. Plant Cell Suspension Culture for Plant Secondary Metabolite Production: Current Status, Constraints, and Future Solutions. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/195703.
Khalifa, A. M., Abd-ElShafy, E., Abu-Khudir, R., Gaafar, R. M., 2022. Influence of gamma radiation and phenylalanine on secondary metabolites in callus cultures of milk thistle (Silybum marianum L.). Journal of Genetic Engineering and Biotechnology, 20(1), 166.
Khatoon, S., Raj, N., Fakhri, K. U., Kumar, S., Manzoor, N., 2025. In vitro and in silico antifungal susceptibilities of thymol against Aspergillus flavus. The Microbe, 8, 100490.
Khayri, J., Banadka, A., Rashmi, R., Nagella, P., Alessa, F., Almaghasla, M., 2023. Cadmium toxicity in medicinal plants: An overview of the tolerance strategies, biotechnological and omics approaches to alleviate metal stress. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1047410.
Kidd, P. S., Llugany, M., Poschenrieder, C. H., Gunse, B., Barcelo, J., 2001. The role of root exudates in aluminium resistance and silicon‐induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). Journal of experimental botany, 52(359), 1339-1352.
Krif, G., El Aissami, A., Mokrini, F., 2025. First Report on the Parasitic Potential of Paraconiothyrium cyclothyrioides Against Meloidogyne incognita. Journal of Phytopathology, 173(4), e70141.
Kruszka, D., Selvakesavan, R., Kachlicki, P., Franklin, G., 2022. Untargeted metabolomics analysis reveals the elicitation of important secondary metabolites upon treatment with various metal and metal oxide nanoparticles in Hypericum perforatum L. cell suspension cultures. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2022.114561.
Kumar, S., Saini, R., Suthar, P., Kumar, V., Sharma, R., 2022. Plant Secondary Metabolites: Their Food and Therapeutic Importance. Içinde A. K. Sharma & A. Sharma (Ed.), Plant Secondary Metabolites (ss. 371-413). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-4779-6_12
Kumokita, R., Bamba, T., Inokuma, K., Yoshida, T., Ito, Y., Kondo, A., Hasunuma, T., 2022. Construction of an L-tyrosine chassis in Pichia pastoris enhances aromatic secondary metabolite production from glycerol. ACS Synthetic Biology, 11(6), 2098-2107.
Künstler, A., Gullner, G., Ádám, A. L., Kolozsváriné Nagy, J., Király, L., 2020. The versatile roles of sulfur-containing biomolecules in plant defense—A road to disease resistance. Plants, 9(12), 1705.
Lajayer, A., Ghorbanpour, M., Nikabadi, S., 2017. Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicology and environmental safety, 145, 377-390. https://doi.org/10.1016/j.ecoenv.2017.07.035.
Li, M., Li, X., Zhang, X., Ai, J., Shi, G., Wang, Z., Liang, L., Liu, J., Sun, D., 2025. Optimization of somatic embryogenesis system and accumulation of secondary metabolites in callus of Schisandra chinensis (Turcz.) Baill. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2025.120572.
Lugan, R., Niogret, M., Leport, L., Guégan, J., Larher, F., Savouré, A., Kopka, J., Bouchereau, A., 2010. Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. The Plant journal: for cell and molecular biology, 64 2, 215-29. https://doi.org/10.1111/j.1365-313X.2010.04323.x.
Lupo, M., Alfieri, G., Filippi, S., Modesti, M., Brunori, E., Pacchiarelli, A., ... Silvestri, C., 2025. Red-leaf hazelnut: Biotechnological approaches for secondary metabolite production and potential biological activities. Plant Physiology and Biochemistry, 229, 110329.
Ma, B., Li, Y., Wang, T., Li, D., Jia, S., 2025. Advances in CRISPR/Cas9-Based Gene Editing in Filamentous Fungi. Journal of Fungi, 11(5), 350.
Mai, N. T. N., Phong, T. H., Cuong, D. M., Luan, V. Q., Tung, H. T., Phuong, H. T. N., ... Nhut, D. T., 2025. The changes of ethylene gas accumulation, antioxidant system activity, and secondary metabolite synthesis during in vitro adventitious root formation of Phyllanthus amarus. Plant Cell, Tissue and Organ Culture (PCTOC), 160(1), 11.
Maleki, M., Ghorbanpour, M., Kariman, K., 2017. Physiological and antioxidative responses of medicinal plants exposed to heavy metals stress. Plant Gene, 11, 247-254. https://doi.org/10.1016/J.PLGENE.2017.04.006.
Mamdouh, D., Smetanska, I., 2022. Optimization of callus and cell suspension cultures of Lycium schweinfurthii for improved production of phenolics, flavonoids, and antioxidant activity. Horticulturae, 8(5), 394.
Maresca, V., Teta, R., Finamore, C., Cianciullo, P., Sorbo, S., D’Auria, M., Basile, A., 2023. Heavy metal stress induces adaptative responses in the liverwort Conocephalum conicum L. (Dum.): an integrated biologic and metabolomic study. Environmental and Experimental Botany. https://doi.org/10.1016/j.envexpbot.2023.105292.
Markowski, M., Czarnomska, Z., Tomiczak, K., Mikuła, A., Granica, S., Podwyszyńska, M., Szypuła, W., 2024. The influence of cryopreservation via encapsulation-dehydration on growth kinetics, embryogenic potential and secondary metabolite production of cell suspension cultures of Gentiana capitata Buch.-Ham. ex D.Don and Gentiana decumbens L. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2024.118349.
Martínez-Chávez, L., Hernández-Ramírez, M., Feregrino-Pérez, A., Escalante, K., 2024. Cutting-Edge Strategies to Enhance Bioactive Compound Production in Plants: Potential Value of Integration of Elicitation, Metabolic Engineering, and Green Nanotechnology. Agronomy. https://doi.org/10.3390/agronomy14122822.
Mazhar, M. W., Ishtiaq, M., Maqbool, M., Jafri, F. I., Siddiqui, M. H., Alamri, S., Akhtar, M. S., 2024. Synergistic effects of selenium nanoparticles and LED light on enhancement of secondary metabolites in sandalwood (Santalum album) plants through in-vitro callus culturing technique. PeerJ, 12, e18106.
Melato, F. A., Regnier, T., McCrindle, R. I., Mokgalaka, N. S., 2012. Impact of metals on secondary metabolites production and plant morphology in vetiver grass (Chrysopogon zizanioides). South African Journal of Chemistry, 65, 178-183.
Micheal, L., 2025. Optimization of In Vitro Culture Conditions for Bioactive Compound Biosynthesis in Lepidium sativum Using UV-C and Melatonin Elicitors.
Ming, Q., Su, C., Zheng, C., Jia, M., Zhang, Q., Zhang, H., Rahman, K., Han, T., Qin, L., 2013. Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. Journal of experimental botany, 64 18, 5687-94. https://doi.org/10.1093/jxb/ert342.
Mipeshwaree Devi, A., Khedashwori Devi, K., Premi Devi, P., Lakshmipriyari Devi, M., Das, S., 2023. Metabolic engineering of plant secondary metabolites: Prospects and its technological challenges. Frontiers in Plant Science, 14, 1171154.
Moeini, A., Germann, N., Malinconico, M., Santagata, G., 2021. Formulation of secondary compounds as additives of biopolymer-based food packaging: A review. Trends in Food Science & Technology, 114, 342-354. https://doi.org/10.1016/j.tifs.2021.05.040
Molina, L., Segura, A., 2021. Biochemical and Metabolic Plant Responses toward Polycyclic Aromatic Hydrocarbons and Heavy Metals Present in Atmospheric Pollution. Plants, 10. https://doi.org/10.3390/plants10112305.
Motolinía-Alcántara, E., Castillo-Araiza, C., Rodríguez-Monroy, M., Román-Guerrero, A., Cruz-Sosa, F., 2021. Engineering Considerations to Produce Bioactive Compounds from Plant Cell Suspension Culture in Bioreactors. Plants, 10. https://doi.org/10.3390/plants10122762.
Murthy, H. N., Dandin, V. S., Zhong, J. J., Paek, K. Y., 2014. Strategies for enhanced production of plant secondary metabolites from cell and organ cultures. In Production of biomass and bioactive compounds using bioreactor technology (pp. 471-508). Dordrecht: Springer Netherlands.
Murthy, H., Joseph, K., Hahn, J., Lee, H., Paek, K., Park, S., 2023. Suspension culture of somatic embryos for the production of high-value secondary metabolites. Physiology and Molecular Biology of Plants, 29, 1153-1177. https://doi.org/10.1007/s12298-023-01365-x.
Nahar, N., Zilani, M. N. H., Biswas, P., Billah, M. M., Bibi, S., Albekairi, N. A., ... Hasan, M. N., 2024. Profiling of secondary metabolite and evaluation of anti-diabetic potency of Crotalaria quinquefolia (L): In-vitro, in-vivo, and in-silico approaches. Saudi Pharmaceutical Journal, 32(1), 101887.
Naik, P. M., Al–Khayri, J. M., 2016. Abiotic and biotic elicitors–role in secondary metabolites production through in vitro culture of medicinal plants. IntechOpen.
Najafi, F., Mohammadi, S., Asgharian, P., Kosari-Nasab, M., 2025. The impact of activated charcoal and graphite on growth parameters and production of secondary metabolites of Plantago maritima through in vitro culture. BMC chemistry, 19(1), 222.
Naji, E. F., Abdulfatah, H. F., Hashim, K. S., 2024. Plant Secondary Metabolites, Their Classification and Biological Roles: A Review. Journal of University of Anbar for Pure Science, 18(1).
Narayani, M., Srivastava, S., 2017. Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochemistry reviews, 16(6), 1227-1252.
Omar, S., Ashokhan, S., Majid, N., Karsani, S., Lau, B., Yaacob, J., 2024. Enhanced azadirachtin production in neem (Azadirachta indica) callus through NaCl elicitation: Insights into differential protein regulation via shotgun proteomics. Pesticide biochemistry and physiology, 199, 105778. https://doi.org/10.1016/j.pestbp.2024.105778.
Ozyigit, I. I., Dogan, I., Hocaoglu-Ozyigit, A., Yalcin, B., Erdogan, A., Yalcin, I. E., Cabi, E., Kaya, Y., 2023. Production of secondary metabolites using tissue culture-based biotechnological applications. Frontiers in Plant Science, 14, 1132555.
Özay, C., Pehlivan, E., 2024. Bitki Sekonder Metabolitlerinin Biyosentezini ve Akümülasyonunu Etkileyen Faktörler. Journal of Faculty of Pharmacy of Ankara University, 48(3), 44-44. https://dergipark.org.tr/en/pub/jfpanu/issue/85047/1488042
Park, S., Paek, K., 2014. Bioreactor Culture of Shoots and Somatic Embryos of Medicinal Plants for Production of Bioactive Compounds. 337-368. https://doi.org/10.1007/978-94-017-9223-3_14.
Pellegrini, M., Ricci, A., Serio, A., Chaves-López, C., Mazzarrino, G., D’Amato, S., Lo Sterzo, C., Paparella, A., 2018. Characterization of Essential Oils Obtained from Abruzzo Autochthonous Plants: Antioxidant and Antimicrobial Activities Assessment for Food Application. Foods, 7(2), 19. https://doi.org/10.3390/foods7020019
Ptak, A., Szewczyk, A., Simlat, M., Pawłowska, B., Warchoł, M., 2024. LED light improves shoot multiplication, steviol glycosides and phenolic compounds biosynthesis in Stevia rebaudiana Bertoni in vitro culture. Scientific Reports, 14(1), 30860.
Rabeh, K., Hnini, M., Oubohssaine, M., 2025. A comprehensive review of transcription factor-mediated regulation of secondary metabolites in plants under environmental stress. Stress Biology, 5(1), 15.
Rahimi, M., Mortazavi, M., Mianabadi, A., Debnath, S., 2023. Evaluation of basil (Ocimum basilicum) accessions under different drought conditions based on yield and physio-biochemical traits. BMC Plant Biology, 23(1), 523.
Rahmawati, A., Esyanti, R. R., 2014. Analysis of secondary metabolite production in somatic embryo of Pasak Bumi (Eurycoma longifolia Jack.). Procedia Chemistry, 13, 112-118.
Rahmawati, A., Faizal, A., Iriawati, Othman, R., Nugrahapraja, H., Esyanti, R. R., 2025. Growth and steviol glycoside analysis on Stevia rebaudiana shoot culture elicited by methyl jasmonate: insight from transcriptomics. Plant Cell, Tissue and Organ Culture (PCTOC), 162(2), 48.
Rai, R., Meena, R. P., Smita, S. S., Shukla, A., Rai, S. K., Pandey-Rai, S., 2011. UV-B and UV-C pre-treatments induce physiological changes and artemisinin biosynthesis in Artemisia annua L.–An antimalarial plant. Journal of photochemistry and photobiology B: Biology, 105(3), 216-225.
Ramakrishna, W., Kumari, A., Rahman, N., Mandave, P., 2021. Anticancer Activities of Plant Secondary Metabolites: Rice Callus Suspension Culture as a New Paradigm. Rice Science. https://doi.org/10.1016/j.rsci.2020.11.004
Ramani, S., Chelliah, J., 2007. UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC plant biology, 7(1), 61.
Rao, M., Zheng, B., 2025. The Role of Polyphenols in Abiotic Stress Tolerance and Their Antioxidant Properties to Scavenge Reactive Oxygen Species and Free Radicals. Antioxidants, 14. https://doi.org/10.3390/antiox14010074.
Rao, S., Usha, K., Arjun., 2015. Production of secondary metabolites from callus cultures of Centella asiatica (L.) Urban. Annals of Phytomedicine-An International Journal, 4(1), 74-78.
Regvar, M., Bukovnik, U., Likar, M., Kreft, I., 2012. UV-B radiation affects flavonoids and fungal colonisation in Fagopyrum esculentum and F. tataricum. Central European Journal of Biology, 7(2), 275-283.
Reshi, Z., Ahmad, W., Lukatkin, A., Javed, S., 2023. From Nature to Lab: A Review of Secondary Metabolite Biosynthetic Pathways, Environmental Influences, and In Vitro Approaches. Metabolites, 13. https://doi.org/10.3390/metabo13080895.
Ritonga, F., Chen, S., 2020. Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in Plants. Plants, 9. https://doi.org/10.3390/plants9050560.
Rui, Z., Xiu-Juan, W., Wei, G., 2020. Regulation mechanism of plant hormones on secondary metabolites. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica, 45(17), 4205-4210. https://doi.org/10.19540/j.cnki.cjcmm.20190129.007.
Saeidnejad, A., 2021. Plant Growth Regulators and Secondary Metabolites, Downregulation and Upregulation. 388-399. https://doi.org/10.1201/9781003093640-25.
Sanyal, A. J., Anstee, Q. M., Trauner, M., Lawitz, E. J., Abdelmalek, M. F., Ding, D., ... Myers, R. P., 2022. Cirrhosis regression is associated with improved clinical outcomes in patients with nonalcoholic steatohepatitis. Hepatology, 75(5), 1235-1246.
Saragoça, A., Silva, A. C., Varanda, C. M., Materatski, P., Ortega, A., Cordeiro, A. I., Telo da Gama, J., 2025. Current Context of Cannabis sativa Cultivation and Parameters Influencing Its Development. Agriculture, 15(15), 1635.
Selwal, N., Goutam, U., Akhtar, N., Sood, M., Kukreja, S., 2024. Elicitation: “A Trump Card” for Enhancing Secondary Metabolites in Plants. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-024-11294-y.
Semenova, N., Ivanitskikh, A., Uyutova, N., Smirnov, A., Proshkin, Y., Burynin, D., Kachan, S., Sokolov, A., Dorokhov, A., Chilingaryan, N., 2024. Effect of UV Stress on the Antioxidant Capacity, Photosynthetic Activity, Flavonoid and Steviol Glycoside Accumulation of Stevia rebaudiana Bertoni. Horticulturae. https://doi.org/10.3390/horticulturae10030210.
Setyawati, A., Samanhudi, S., Prameswari, W., Syukri, D., Ramadhani, D. F., Talitha, O., 2023. In Vitro Propagation and Secondary Metabolite Production of Medicinal Plant of Euchresta horsfieldii (Lesch) Benn. Plant Breeding and Biotechnology, 11(1), 34-48.
Shasmita, Behera, S., Mishra, P., Samal, M., Mohapatra, D., Monalisa, K., Naik, S. K., 2023. Recent advances in tissue culture and secondary metabolite production in Hypericum perforatum L. Plant Cell, Tissue and Organ Culture (PCTOC), 154(1), 13-28.
Singh, P., Singh, A., Choudhary, K., 2023. Revisiting the role of phenylpropanoids in plant defense against UV-B stress. Plant Stress. https://doi.org/10.1016/j.stress.2023.100143.
Smetanska, I., 2008. Production of secondary metabolites using plant cell cultures. Advances in biochemical engineering/biotechnology, 111, 187-228. https://doi.org/10.1007/10_2008_103.
Song, X., Zhu, Y., Bao, Y., 2025. Identification and characteristics of differentially expressed genes under UV-B stress in Gossypium hirsutum. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1529912.
Souffront, D. K. S., Salazar-Amoretti, D., Jayachandran, K., 2022. Influence of vermicompost tea on secondary metabolite production in tomato crop. Scientia Horticulturae, 301, 111135.
Sreekissoon, A., Chen, W., Viljoen, A. M., Finnie, J. F., Van Staden, J., 2025. The Effects of Light, Salt, and Osmotic Stress on Mesembryanthemum tortuosum Growth and Mesembrine‐Type Alkaloid Production In Vitro. Physiologia Plantarum, 177(4), e70385.
Sreenikethanam, A., Raj, S., J., R., Gugulothu, P., Bajhaiya, A., 2022. Genetic Engineering of Microalgae for Secondary Metabolite Production: Recent Developments, Challenges, and Future Prospects. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.836056.
Sudheer, W. N., Thiruvengadam, M., Nagella, P., 2023. A comprehensive review on tissue culture studies and secondary metabolite production in Bacopa monnieri L. Pennell: A nootropic plant. Critical reviews in biotechnology, 43(6), 956-970.
Swallah, M. S., Sun, H., Affoh, R., Fu, H., Yu, H., 2020. Antioxidant Potential Overviews of Secondary Metabolites (Polyphenols) in Fruits. International Journal of Food Science, 2020(1), 9081686. https://doi.org/10.1155/2020/9081686
Szabó, B., Tyihák, E., Szabó, G., Botz, L., 2003. Mycotoxin and drought stress induced change of alkaloid content of Papaver somniferum plantlets. Acta Botanica Hungarica, 45(3-4), 409-417.
Takshak, S., Agrawal, S., 2019. Defense potential of secondary metabolites in medicinal plants under UV-B stress. Journal of photochemistry and photobiology. B, Biology, 193, 51-88. https://doi.org/10.1016/j.jphotobiol.2019.02.002.
Tarigholizadeh, S., Motafakkerazad, R., Kosari-Nasab, M., Movafeghi, A., Mohammadi, S., Sabzi, M., Talebpour, A., 2021. Influence of plant growth regulators and salicylic acid on the production of some secondary metabolites in callus and cell suspension culture of Satureja sahendica Bornm. Acta agriculturae Slovenica. https://doi.org/10.14720/aas.2021.117.4.773.
Teoh, E. S., 2016. Secondary Metabolites of Plants. Medicinal Orchids of Asia (ss. 59-73). Springer International Publishing. https://doi.org/10.1007/978-3-319-24274-3_5
Terletskaya, N., Shadenova, E., Litvinenko, Y., Ashimuly, K., Erbay, M., Mamirova, A., Nazarova, I., Meduntseva, N., Kudrina, N., Korbozova, N., Djangalina, E., 2024. Influence of Cold Stress on Physiological and Phytochemical Characteristics and Secondary Metabolite Accumulation in Microclones of Juglans regia L.. International Journal of Molecular Sciences, 25. https://doi.org/10.3390/ijms25094991.
Thakur, A., Morya, S., Kumar, D., Ahmed, J., Mac Regenstein, J., Fuoco, D., 2025. Potential of Quinoa as a Source of Secondary Metabolites for Human Health. In Plant Secondary Metabolites (pp. 274-293). CRC Press.
Thoma, F., Somborn-Schulz, A., Schlehuber, D., Keuter, V., Deerberg, G., 2020. Effects of Light on Secondary Metabolites in Selected Leafy Greens: A Review. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00497.
Tidke, S., Kiran, S., Giridhar, P., Gokare, R., 2019. Current Understanding and Future Perspectives of Endophytic Microbes vis-a-vis Production of Secondary Metabolites. Reference Series in Phytochemistry. https://doi.org/10.1007/978-3-319-76900-4_12-1.
Tomiczak, K., Mikuła, A., Niedziela, A., Wójcik-Lewandowska, A., Domżalska, L., Rybczyński, J., 2019. Somatic Embryogenesis in the Family Gentianaceae and Its Biotechnological Application. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00762.
Tripathi, D., Meena, R., Pandey-Rai, S., 2021. Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition. Physiology and Molecular Biology of Plants, 27, 1823 - 1835. https://doi.org/10.1007/s12298-021-01046-7.
Twaij, B. M., Hasan, M. N., 2022. Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. International Journal of Plant Biology, 13(1), 4-14. https://www.mdpi.com/2037-0164/13/1/3
Ullrich, C. I., Aloni, R., Saeed, M. E., Ullrich, W., Efferth, T., 2019. Comparison between tumors in plants and human beings: Mechanisms of tumor development and therapy with secondary plant metabolites. Phytomedicine, 64, 153081.
Ülger, T. G., Ayhan, N. Y., 2020. Bitki sekonder metabolitlerinin sağlık üzerine fonksiyonel etkileri. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi, 3, 384-390. https://dergipark.org.tr/en/download/article-file/1701934
Vázquez-Flota, F., Monforte-González, M., Miranda-Ham, M., 2016. Application of Somatic Embryogenesis to Secondary Metabolite-Producing Plants. 455-469. https://doi.org/10.1007/978-3-319-33705-0_25.
Verma, V., Ravindran, P., Kumar, P. P., 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16(1), 86. https://doi.org/10.1186/s12870-016-0771-y
Vuran, N. E., Türker, M., 2021. Bitki doku kültürlerinde sekonder metabolit miktarını arttırmaya yönelik uygulamalar. International Journal of Advances in Engineering and Pure Sciences, 33(3), 487-498. https://dergipark.org.tr/en/pub/jeps/issue/64843/900129
Wang, G., Sun, X., Li, Y., Wang, Y., Jin, C., 2025. The role of UV-B radiation in modulating secondary metabolite biosynthesis and regulatory mechanisms in medicinal plants. BioResources. https://doi.org/10.15376/biores.20.2.wang.
Wawrosch, C., Zotchev, S., 2021. Production of bioactive plant secondary metabolites through in vitro technologies—status and outlook. Applied Microbiology and Biotechnology, 105, 6649 - 6668. https://doi.org/10.1007/s00253-021-11539-w.
Wawrosch, C., Zotchev, S. B., 2021. Production of bioactive plant secondary metabolites through in vitro technologies—Status and outlook. Applied Microbiology and Biotechnology, 105(18), 6649-6668. https://doi.org/10.1007/s00253-021-11539-w
Wu, P., Wang, G., Cao, Z., Liu, Y., Xia, N., Wang, Q., ... Chen, Z., 2023. Effects of different light qualities and plant growth regulators on the growth and secondary metabolite content of Lonicera macranthoides seedlings. In Vitro Cellular & Developmental Biology-Plant, 59(5), 536-546.
Wu, T., Kerbler, S., Fernie, A., Zhang, Y., 2021. Plant cell cultures as heterologous bio-factories for secondary metabolite production. Plant Communications, 2. https://doi.org/10.1016/j.xplc.2021.100235.
Xiao, C., Xu, C., Zhang, J., Jiang, W., Zhang, X., Yang, C., ... Zhou, T., 2022. Soil Microbial Communities Affect the Growth and Secondary Metabolite Accumulation in Bletilla striata (Thunb.) Rchb. f. Frontiers in Microbiology, 13, 916418.
Yue, W., Ming, Q., Lin, B., Rahman, K., Zheng, C., Han, T., Qin, L., 2016. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Critical Reviews in Biotechnology, 36, 215 - 232. https://doi.org/10.3109/07388551.2014.923986.
Zandavar, H., Babazad, M. A., 2023. Secondary Metabolites: Alkaloids. Herbs and Spices: New Advances, 79.
Zhang, Y., Qi, G., Yao, L., Huang, L., Wang, J., Gao, W., 2022. Effects of Metal Nanoparticles and Other Preparative Materials in the Environment on Plants: From the Perspective of Improving Secondary Metabolites. Journal of agricultural and food chemistry. https://doi.org/10.1021/acs.jafc.1c05152.
Zhao, K., Lan, Y., Shi, Y., Duan, C., Yu, K., 2024. Metabolite and transcriptome analyses reveal the effects of salinity stress on the biosynthesis of proanthocyanidins and anthocyanins in grape suspension cells. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1351008.
Zhong, C., Cao, X., Hu, J., Zhu, L., Zhang, J., Huang, J., Jin, Q., 2017. Nitrogen Metabolism in Adaptation of Photosynthesis to Water Stress in Rice Grown under Different Nitrogen Levels. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01079.