Hücre Süspansiyon Kültürü

Özet

Bu bölümde, bitki hücre süspansiyon kültürlerinin temel prensipleri, tarihsel gelişimi ve biyoteknolojik uygulamaları ayrıntılı biçimde ele alınmaktadır. Hücre süspansiyon kültürleri, bitkisel hücrelerin sıvı besin ortamlarında kontrollü koşullar altında çoğaltılmasına dayanan bir tekniktir ve özellikle sekonder metabolit üretimi açısından büyük önem taşımaktadır. Bölümde, hücre kültürlerinin gelişim süreci, kallus oluşumu, hücre farklılaşması ve hücre süspansiyonlarının elde edilme yöntemleri ayrıntılı olarak açıklanmıştır. Ayrıca hücre kültürlerinin başarısını etkileyen temel faktörler; besin ortamı içeriği, büyüme düzenleyicileri, karbon kaynakları, sterilizasyon koşulları ve çevresel faktörler bağlamında değerlendirilmiştir. Hücre süspansiyon kültürlerinin biyoreaktör sistemlerinde ölçeklendirilmesi, sekonder metabolit üretimi açısından sunduğu avantajlar ve endüstriyel kullanıma yönelik potansiyeli vurgulanmıştır. Bunun yanında, hücre kültürlerinde karşılaşılan teknik sınırlamalar, kontaminasyon riskleri ve hücresel stabilite sorunları da ele alınmıştır. Sonuç olarak bu bölüm, hücre süspansiyon kültürlerinin bitki biyoteknolojisindeki yerini, temel prensiplerini ve uygulama alanlarını kapsamlı bir şekilde ortaya koymaktadır.

Referanslar

Akçam Oluk, E., 2006. Bitki Hücre Süspansiyon Kültürleri ve Sekonder Metabolit Üretimi.

Archambault, J., Lavoie L, Williams, R.D.,1995. Nutritional aspects of Daucus carota somatic embryo cultures performed in bioreactors. In: Terzi M, Cella R, Falavigna A, eds. Current Issues in Plant Molecular and Cellular Biology. Dordrecht: Kluwer Acad Publ, 681-87.

Buddendorf-Joosten, J. M. C., Woltering, E. J., 1994. Components of the gaseous environment and their effects on plant growth and development in vitro. In: Lumsden PJ, Nicholas JR and Davies WJ, eds. Physiology Growth and Development of Plants in Culture. Dordrecht: Kluwer Acad Publ, 165-90.

Cazzulino, D., Pederson, H., Chin, C. K., 1991. Bioreactors and image analysis for scale-up and plant propagation. In: Vasil IK, ed. Cell Culture and Somatic Cell Genetics of Plants. San Diego: Academic Press, 147-77.Chen, S., Zhao, B., Wang, X., Yuan, X., Wang, Y., 2004. Promotion of the growth of Crocus sativus cells and the production of crocin by rare earth elements. Biotechnol Lett, 26, 27–30

Crespi-Perellino, N., Guicciardi, A., Malyszko, G., 1986. Occurrence of indole alkaloids in Ailanthus altissima cell cultures. J Nat Prod, 49, 1010–14

Dar, Z. A., Meena, P. D,, Kumar, A., 2012. Principles of plant breeding. Pointer Publishers, Jaipur, p 250.

De-Eknamkul, W., Ellis, B. E., 2007. Rosmarinic acid production and growth characteristics of Anchusa officinalis cell suspension cultures. Planta Med, 50, 346–50

Fujita, Y., Maeda, Y., Suga, C., Morimoto, T. 1983. Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon. III. Comparison of shikonin derivatives of cultured cells and Ko-shikon. Plant cell reports, 2(4), 192-193.

Gautheret, R. J., 1934. Culture de tissu cambial. C R Acad Sci Paris 198, 2195–2196.

Haberlandt, G.,1902. Culturversuche mit isolierten Pflanzenzellen. Sitzungsber. Kais. Akad. Wiss.—Math. Naturw. Klasse, Wien Bd. CXI, 69–92.

Hall, R. D. (2000). Plant cell culture initiation. Molecular biotechnology, 16(2), 161-173.

Härtel, O.,2003. Gottlieb Haberlandt (1854–1945): a portrait. In: Laimer M, Rücker W (eds) Plant tissue culture. Springer, Vienna.Hippolyte, I., Marin, B., Baccou, J. C., Jonard, R., 1992. Growth and rosmarinic acid production in cell suspension cultures of Salvia officinalis L. Plant Cell Rep, 11, 109–12.

Huang, F., Kutchan, T. M., 2000. Distribution of morphinan and benzophenanthridine alkaloid gene transcript accumulation in Papaver somniferum. Phytochemistry, 53, 555–64.

Ilan, A., Ziv, M., Halevy, A. A.,1995. Propagation and corm development of Brodiaea in liquid cultures. Scientia Hort, 63,101-12.

Imseng, N., Schillberg, S., Schürch, C., Schmid, D., Schütte, K., Gorr, G., Eibl D., Eibl, R., 2014. Suspension culture of plant cells under heterotrophic conditions. Industrial scale suspension culture of living cells, 224-258.

Jay, V., Genestier, S., Courduroux, J.C., 1994. Bioreactor studies on the effect of medium pH on carrot (Daucus carota L.) somatic embryogenesis. Plant Cell Tis Org Cult, 36:205-209.

Kang, S., Min, J., Kim, Y., 2009. Effect of biotic elicitors on the accumulation of bilobalide and ginkgolides in Ginkgo biloba cell cultures. J Biotechnol, 139, 84–8.

Kaya, S., 2015. Triakontanol'un Serbest Ve Tutuklanmış Capsıcum annuum L. Hücre Süspansiyon Kültüründe Kapsaisin Üretimi Üzerine Etkisi. Niğde Ömer Halisdemir Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi Sf. 62.

Kshirsagar, P. R., Chavan, J. J., Umdale, S. D., Nimbalkar, M. S., Dixit, G. B., Gaikwad, N. B., 2015. Highly efficient in vitro regeneration, establishment of callus and cell suspension cultures and RAPD analysis of regenerants of Swertia lawii Burkill. Biotechnology Reports, 6, 79-84.

Kumar, A., Roy, S., 2011. Plant tissue culture and applied plant biotechnology. Avishkar Publishers, Jaipur, 346 pp.

Kumar A, Sopory S (eds) (2010) Applications of plant biotechnology: in vitro propagation, plant transformation and secondary metabolite production. I.K. International, New Delhi, 606 pp.

Luttman, R., Florek, P., Preil, W. 1994. Silicone-tubing aerated bioreactors for somatic embryo production. Plant Cell Tiss Org Cult, 39(2), 157-70.

Merillon, J. M.,1999. Large-scale production in bioreactors. In: Ramawat KG, Merillon JM, eds. Biotechnology Secondary Metabolites. Enfield: Science publishers Inc, 331-50.

Miller, C. O., Skoog, F., Von Saltza, M. H., Strong, F., 1955. J Am Chem SOC, 77,1392-93.

Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue. Physiol Plant. 15.473–497.

Mühlbach, H., 1998. Use of plant cell cultures in biotechnology. Biotech Ann Rev, 4,113-71.

Neumann, K. H., Kumar, A., Imani, J., 2020. Cell Suspension Cultures. In Plant Cell and Tissue Culture–A Tool in Biotechnology (pp. 61-69). Springer, Cham.

Nobecourt, P.C., 1937. Culture en série de tissus végétaux sur le milieu artificiel. C R Acad Sci Paris 205:521–523.

Orihara, Y., Ebizuka, Y., 2010. Production of triterpene acids by cell-suspension cultures of Olea europaea. Chem Pharm Bull (Tokyo), 55, 341–7Pinoargote-Chang, M., Corozo-Quiñónez, L., Saltos-Rezabala, L. A., & Arias Echeverri, J. P. (2025). Annona deceptrix as a potential biofactory for secondary metabolites using plant cell and tissue cultures. Scientia Agropecuaria, 16(3), 439-456.

Pras, N., Woerdenbag, H. J., Batterman, S., 1993. Mucuna pruriens: improvement of the biotechnological production of the anti-Parkinson drug L-dopa by plant cell selection. Pharm World Sci, 15, 263–8.

Praveen, N., Murthy, H. N., Chung, I. M., 2011. Improvement of growth and gymnemic acid production by altering the macro elements concentration and nitrogen source supply in cell suspension cultures of Gymnema sylvestre R. Br Ind Crop Prod, 33, 282–6.

Rehwald, L., 1927. Zeitschr Pflanzenkrankenkeiten Pflanzenschutz, 37,65–86.

Robins, R. I., Secondary products from cultured cells and organs: Molecular and cellular approaches. In: Dixon RA, Gonzales RA, eds. Plant Cell Culture. Oxford: IRL Press, 1994:169-97.

Ruffoni, B., Pistelli, L., Bertoli, A., Pistelli, L., 2010. Plant cell cultures: bioreactors for industrial production. In Bio-farms for nutraceuticals (pp. 203-221). Springer, Boston, MA.

Schleiden M. J., 1838. Beitrage zur Phytogenesis. Archiv fuer Anatomie und Physiologie in Verbindung mit mehreren gelehrten herausgegeben von Johannes Mueller, Verlag von veit ET COMP. Berlin, pp. 137– 176.

Schwann, T., 1839. Mikroskopishe Untersuchungen uber die Ubereinstimmung in der Struktur unddem Wachstun der Tiere und Pflanzen, (Smith, H., transl.) London, Sydenham Society.

Scragg, A. H., 1990. Fermentation systems for plant cells. In: Charlwood BV, Rhodes MJC, eds. Secondary Products from Plant Tissue Culture. London: Clarendon Press, 243-63.

Scragg, A. H., 1992 Large-scale plant cell culture: methods, applications and products. Curr Opin Biotech, 3,105-09.

Stafford, A., Morris, P., Fowler, M. W., 1986 Plant cell biotechnology: A perspective. Enz Microbial Technol, 8,578-97.

Stuart, D. A., Strickland, S. G., Walker, K. A.,1987 Bioreactor production of alfalfa somatic embryos. HortScience, 22,800-03.

Sumaryono, W., Proksch, P., Hartmann, T., 1991. Induction of rosmarinic acid accumulation in cell suspension cultures of Orthosiphon aristatus after treatment with yeast extract. Phytochemistry, 30, 3267–71.

Sun, X., Linden, J. C., 1999. Shear stress effects on plant cell suspension cultures in a rotating wall vessel bioreactor. J Ind Microbiol biotechnol, 22,44-47.

Suri, S. S., Sharma, R., Ramawat, K. G., 2000. Production of secondary metabolites in bioreactors. In: Khan IA, Khanum A, eds. Role of Biotechnology in Medicinal and Aromatic Plants Vol II. Hyderabad: UKAAZ Publications, 437-51.

Szabo, E., Thelen, A., Petersen, M., 1999. Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Rep, 18, 485–9

Taha, H.S., Abd El-Kawy, A. M., Fathalla, M. A. E., 2012. A new approach for achievement of inulin accumulation in suspension cultures of Jerusalem artichoke (Helianthus tuberosus) using biotic elicitors. J Genet Eng Biotechnol, 10, 33–8

Takayama, S., Akita, M.. 1998. Bioreactor techniques for large-scale culture of plant propagules. Adv Hort Sci, 12,93-100.

Titova, M., Popova, E., Nosov, A., 2024. Bioreactor Systems for Plant Cell Cultivation at the Institute of Plant Physiology of the Russian Academy of Sciences: 50 Years of Technology Evolution from Laboratory to Industrial Implications. Plants, 13(3), 430.

Tulecke, W., Nickel, L. G., 1959. Production of large amounts of plant tissue by submerged cultures. Science, 130,863-64.

Waltz, E., 2016 CRISPR-edited crops free to enter market, skip regulation. Nat Biotechnol, 34(6), 582–582. https://doi.org/10.1038/nbt0616-582

White, P. H., 1939. Controlled differentiation in a plant tissue culture. Bull Torrey Bot Club, 66,507–519.

Xu, J., Ge, X., Dolan, M. C., 2011. Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnology advances, 29(3), 278-299.

Xu, X., Zhang, W., Cao, X., Xue, S., 2011. Abietane diterpenoids synthesized by suspension-cultured cells of Cephalotaxus fortunei. Phytochem Lett, 4, 52–5.

Yamamoto, H., Yazaki, K., Inoue, K., 2000. Simultaneous analysis of shikimate-derived secondary metabolites in Lithospermum erythrorhizon cell suspension cultures by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl, 738, 3–15

Zenk, M. H., 1978. The impact of plant cell culture on industry. In: Thorpe TA, ed. Frontiers of Plant Tissue Culture. Calgary: Int Ass for Plant Tissue Culture,1-13.

Zhao, D., Fu, C., Han, Y., Lu, D., 2005a. Effects of elicitation on jaceosidin and hispidulin production in cell suspension cultures of Saussurea medusa. Process Biochem, 40, 739–45.

Ziv, M., Hadar, A.,1991. Morphogenic pattern of Nephrolepsis exaltata Bostoniensis in agar-gelled or liquid culture. Implication for mass propagation. Israel J Bot, 40,7-16.

Yayınlanan

14 Ocak 2026

Lisans

Lisans