Temel Teknikleri ve Laboratuvar Organizasyonu
Özet
Referanslar
Algopishi, U.B., Abdelghffar, A.M., Al Aboud, N.M., Safhi, F.A., Fayad, E., Alharbi, K., Hassanin, A.A., 2025. The genetic applications of plant cell and tissue culture techniques: essential tools for genetic manipulation and crop improvement. Not Bot Horti Agrobo, 53(3), 14718–14718.
Altpeter, F., Springer, N.M., Bartley, L.E., Blechl, A.E., Brutnell, T.P., Citovsky, V., Conrad, L.J., Gelvin, S.B., Jackson, D.P., Kausch, A.P., Lemaux, P.G., Medford, J.I., Orozco-Cárdenas, M.L., Tricoli, D.M., Van Eck, J., 2016. Advancing crop transformation in the era of genome editing. Plant Cell, 28(7), 1510–1520. https://doi.org/10.1105/tpc.16.00196
Askari, N., Aliniaeifard, S., Visser, R.G., 2022. Low CO₂ levels are detrimental for in vitro plantlets through disturbance of photosynthetic functionality and accumulation of reactive oxygen species. Horticulturae, 8(1), 44. https://doi.org/10.3390/horticulturae8010044
Bairu, M.W., Aremu, A.O., Van Staden, J., 2011. Somaclonal variation in plants: causes and detection methods. Plant Growth Regul, 63(2), 147–173. https://doi.org/10.1007/s10725-010-9554-x
Behera, B., Behera, S., Mohapatra, D., Barik, D., Naik, S., 2021. Regeneration of plants from alginate-encapsulated axenic nodal segments of Paederia foetida L., a medicinally important and vulnerable plant species. J Plant Biotechnol, 48(4), 255–263. https://doi.org/10.5010/jpb.2021.48.4.255
Bortesi, L., Fischer, R., 2015. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv, 33(1), 41–52. https://doi.org/10.1016/j.biotechadv.2014.12.006
Castillo, B., Smith, M., Yadava, U., 1998. Plant regeneration from encapsulated somatic embryos of Carica papaya L. Plant Cell Rep, 17(3), 172–176. https://doi.org/10.1007/s002990050373
Dewir, Y.H., Chakrabarty, D., Ali, M.B., Hahn, E.J., Paek, K.Y., 2024. Hyperhydricity in plant tissue culture: causes and mitigation strategies. Plant Cell Tiss Organ Cult, 156, 1–15. https://doi.org/10.1007/s11240-023-02693-5
Dewir, Y.H., et al., 2023. Light and dark modulation of somatic embryogenesis in horticultural crops. Plants, 12, 2871.
Dwivedi, S.L., et al., 2015. Haploids: constraints and opportunities in plant breeding. Biotechnol Adv, 33(6), 812–829. https://doi.org/10.1016/j.biotechadv.2015.07.001
Elansary, D.W.A., et al., 2024. Efficacy of plant tissue culture techniques for eliminating viruses in horticultural crops: shoot-tip culture, thermotherapy, cryotherapy and their combinations. Plants, 13(21), 2959.
Esyanti, R., Fadholi, M., Rizki, R., Faizal, A., 2019. Shoot multiplication and growth rates of Aquilaria malaccensis Lamk. shoot cultures in temporary immersion system (TIS)-RITA® and bubble column bioreactors. Pak J Bot, 51(4). https://doi.org/10.30848/pjb2019-4(36)
Fehér, A., 2015. Somatic embryogenesis—stress-induced remodeling of plant cell fate. BBA Gene Regul Mech, 1849(4), 385–402.
George, E.F., Hall, M.A., De Klerk, G.J., 2007. Plant propagation by tissue culture. Vol. 1: The background. Springer, Dordrecht.
Georgiev, V., Schumann, A., Pavlov, A., Bley, T., 2014. Temporary immersion systems in plant biotechnology. Eng Life Sci, 14(6), 607–621. https://doi.org/10.1002/elsc.201300166
Germanà, M.A., 2011. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep, 30(5), 839–857. https://doi.org/10.1007/s00299-011-1061-7
Hartmann, H.T., Kester, D.E., 1959. Plant propagation: principles and practices. Prentice-Hall, New Jersey.
Hung, C., Trueman, S., 2011. Alginate encapsulation of shoot tips and nodal segments for short-term storage and distribution of the eucalypt Corymbia torelliana × C. citriodora. Acta Physiol Plant, 34(1), 117–128. https://doi.org/10.1007/s11738-011-0810-0
Iqbal, M., Ali, A., Rashid, H., Raja, N., Naveed, N., Mashwani, Z., Chaudhry, Z., 2019. Evaluation of sodium alginate and calcium chloride on development of synthetic seeds. Pak J Bot, 51(5). https://doi.org/10.30848/pjb2019-5(36)
Jiroutová, P., Sedlák, J., 2020. Cryobiotechnology of plants: a hot topic not only for gene banks. Appl Sci, 10(13), 4677.
Leifert, C., Cassells, A.C., 2001. Microbial hazards in plant tissue and cell cultures. In Vitro Cell Dev Biol-Plant, 37(2), 133–138.
Lyam, P., Musa, M., Jamaleddine, Z., Okere, U., Odofin, W., 2012. The potential of temporary immersion bioreactors (TIBs) in meeting crop production demand in Nigeria. J Biol Life Sci, 3(1). https://doi.org/10.5296/jbls.v3i1.1156
Mangena, P., 2021. Synthetic seeds and their role in agriculture: status and progress in Sub-Saharan Africa. Plant Sci Today, 8(3). https://doi.org/10.14719/pst.2021.8.3.1116
Martins, J.P.R., Rodrigues, L.C.A., Santos, E.R., Gontijo, A.B.P.L., Falqueto, A.R., 2020. Impacts of photoautotrophic, photomixotrophic and heterotrophic conditions on anatomy and photosystem II of in vitro-propagated Aechmea blanchetiana. In Vitro Cell Dev Biol-Plant, 56(3), 350–361.
Mendonça, E.G., Stein, V.C., Carvalho, H.H., Santos, B.R., Beijo, L.A., Paiva, L.V., 2016. Continuous temporary immersion bioreactor system and semisolid medium for production of Eucalyptus camaldulensis clones. Cienc Florest, 26(4), 1211–1224. https://doi.org/10.5902/1980509825112
Meucci, A., Ghelardi, C., Chietera, G., Mensuali, A., 2024. Synthetic seed production and slow growth storage of in vitro cultured plants of Iris pallida Lam. Horticulturae, 10(3), 272.
Mishra, M., Rajan, S., Damodaran, T., 2024. New paradigm shifts in micropropagation of fruit crops through bioreactors – a review. Indian J Hortic, 81(1), 1–10. https://doi.org/10.58993/ijh/2024.81.1.1
Murthy, H.N., Joseph, K.S., Hahn, J.E., Lee, H.S., 2023. Suspension culture of somatic embryos for production of high-value secondary metabolites. Physiol Mol Biol Plants, 29(8), 1–18. https://doi.org/10.1007/s12298-023-01365-x
Pepe, M., Marie, T.R., Leonardos, E.D., Hesami, M., Rana, N., Jones, A.M.P., Grodzinski, B., 2022. Tissue culture coupled with gas exchange system for phenotyping developmental biology of Solanum lycopersicum ‘MicroTom’. Front Plant Sci, 13, 1025477.
Polivanova, O.B., Bedarev, V.A., 2022. Hyperhydricity in plant tissue culture. Plants, 11(23), 3313.
Rahayu, A., Umami, L., Cen, S., Abdusshamad, B., Sean, L., Budiman, K., Semiarti, E., 2023. Automatic dual sequence control temporary immersion bioreactor systems for Coelogyne pandurata. Bio Web Conf, 80, 06002. https://doi.org/10.1051/bioconf/20238006002
Rai, M.K., Kalia, R.K., Singh, R., Gangola, M.P., Dhawan, A.K., 2011. Developing stress tolerant plants through in vitro selection. Environ Exp Bot, 71(1), 89–98.
Ranaware, A.S., Kumar, N., Singh, A.K., Bhat, S.R., Prakash, S., 2023. Protoplast technology and somatic hybridisation in Brassica. Plants, 12(5), 1060. https://doi.org/10.3390/plants12051060
Ribeiro, I.D.S., Ribeiro, L.M., Soares, J.S., Ramos, J.C.M., Sorgato, J.C., 2022. Light condition and flask sealing on germination of Dendrobium nobile. Ornam Hortic, 28(4), 407–413.
Shuro, A.R., 2020. Review on somatic hybridization and its role in crop improvement. J Biol Agric Healthc, 10(6), 1–9.
Silva, D.R., Soares, M.N.B., Silva, M.C.R., Lima, M.C., Silva-Moraes, V.K.O., Alves, G.L., Felipe, S.H.S., 2024. In vitro photoautotrophy for Eryngium foetidum. Horticulturae, 10(1), 107.
Singh, S., Manoj, K., Asthana, P., Sahoo, L., 2010. Alginate-encapsulation of nodal segments of Eclipta alba. Acta Physiol Plant, 32(3), 607–610. https://doi.org/10.1007/s11738-009-0444-7
Thanuja, K., Arulmozhiyan, R., Saraswathi, M.S., Selvarajan, R., Jegadeeswari, V., Rajanbabu, V., 2025. In vitro therapies for virus elimination in horticultural crops. Planta, 262(1), 15.
Vásquez-Hernández, M., et al., 2023. In vitro mutagenesis for improvement of Agave genus. Plant Physiol Biochem, 197, 107647.
Wang, H., Hou, H., Jan, C.C., Chao, W.S., 2023. Irradiated pollen-induced parthenogenesis for doubled haploid production in sunflower. Plants, 12(13), 2430. https://doi.org/10.3390/plants12132430