Bitki Doku Kültürlerinin Tarihsel Gelişimi
Özet
Bitki doku kültürlerinin tarihsel gelişimi, modern bitki biyoteknolojisinin şekillenmesinde temel bir rol oynamıştır. Alanın teorik temelleri, Gottlieb Haberlandt tarafından 1902 yılında ortaya konmuş; bitki hücrelerinin totipotensi kavramı bu dönemde bilimsel literatüre kazandırılmıştır. 1935–1960 yılları arasında doku kültürü, deneysel bir yaklaşımdan sistematik bir biyoteknolojik yönteme dönüşmüş; kallus kültürü, organogenez ve somatik embriyogenez gibi temel kavramlar netleşmiştir. 1960–1980 dönemi, bitki rejenerasyonunun oksin–sitokinin dengesi üzerinden kontrol edilebildiğinin gösterilmesiyle modern doku kültürü uygulamalarının temellerinin atıldığı kritik bir evre olmuştur. 1980’lerden itibaren protoplast kültürü, somatik hibridizasyon ve somaklonal varyasyon gibi yaklaşımlar, genetik çeşitliliği artıran önemli araçlar hâline gelmiştir. 1950–2005 yılları arasında geliştirilen ve standartlaşan besin ortamları, doku kültürü uygulamalarının yaygınlaşmasını sağlamıştır. Son yirmi yılda ise yeni nesil bitki büyüme düzenleyicileri, geçici daldırma sistemleri ve biyoreaktör teknolojileri mikroçoğaltım verimliliğini önemli ölçüde artırmıştır. Günümüzde yapay zekâ ve makine öğrenmesi yaklaşımlarının yanı sıra genom düzenleme ve çoklu omik teknolojilerin entegrasyonu, bitki doku kültürlerini ileri ıslah ve biyoteknolojik üretim açısından stratejik bir konuma taşımıştır.
Referanslar
Abdalla, N., El-Ramady, H., Seliem, M., El-Mahrouk, M., Taha, N., Bayoumi, Y., Shalaby, T. A., & Dobránszki, J., 2022. An academic and technical overview on plant micropropagation challenges. Horticulturae, 8(8), 677. https://doi.org/10.3390/horticulturae8080677
Ahuja, M., 2021. Fate of forest tree biotechnology facing climate change. Silvae Genetica, 70(1), 117-136. https://doi.org/10.2478/sg-2021-0010
Alam, N., Anis, M., 2019. Untitled. Research Journal of Life Sciences Bioinformatics Pharmaceutical and Chemical Sciences, 05(02). https://doi.org/10.26479/2019.0502.34
Ali, M., Okubo, H., Fujieda, K., 1991. In vitro multiplication of intra- and interspecific solanum hybrids through somatic embryogenesis and adventitious organogenesis. Journal of the Japanese Society for Horticultural Science, 60(3), 601-612. https://doi.org/10.2503/jjshs.60.601
Alok, A., Sandhya, D., Jogam, P., Rodrigues, V., Bhati, K., Sharma, H., & Kumar, J., 2020. The rise of the crispr/cpf1 system for efficient genome editing in plants. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00264
Amankwaah, V., Prempeh, R., Quain, M., 2023. Plant cryopreservation importance, approaches and future trends. https://doi.org/10.5772/intechopen.108806
Arab, M., Yadollahi, A., Eftekhari, M., Ahmadi, H., Akbari, M., Sarikhani, S., 2018. Modeling and optimizing a new culture medium for in vitro rooting of g×n15 prunus rootstock using artificial neural network-genetic algorithm. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-27858-4
Arab, M., Yadollahi, A., Shojaeiyan, A., Ahmadi, H., 2016. Artificial neural network genetic algorithm as powerful tool to predict and optimize in vitro proliferation mineral medium for g × n15 rootstock. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01526
Aremu, A., Moyo, M., Amoo, S., Grúz, J., Šubrtová, M., Plíhalová, L., Doležal, K., & Staden, J., 2014. Effect of a novel aromatic cytokinin derivative on phytochemical levels and antioxidant potential in greenhouse grown Merwilla plumbea. Plant Cell Tissue and Organ Culture (Pctoc), 119(3), 501-509. https://doi.org/10.1007/s11240-014-0550-0
Ashmore, S., Hamilton, K., Offord, C., 2010. Conservation technologies for safeguarding and restoring threatened flora: case studies from Eastern Australia. In Vitro Cellular & Developmental Biology - Plant, 47(1), 99-109. https://doi.org/10.1007/s11627-010-9320-9
Badr-Elden, A., Nower, A., Nasr, M., Ibrahim, I., 2010. Isolation and fusion of protoplasts in sugar beet (Beta vulgaris L.). Sugar Tech, 12(1), 53-58. https://doi.org/10.1007/s12355-010-0010-z
Bettoni, J., Costa, M., Gardin, J., Kretzschmar, A., Pathirana, R. 2016. Cryotherapy: A new technique to obtain grapevine plants free of viruses. Revista Brasileira De Fruticultura, 38(2). https://doi.org/10.1590/0100-29452016833
Bhowmik, P., Konkin, D., Polowick, P., Hodgins, C., Subedi, M., Xiang, D., Yu, B., Patterson, N., Rajagopalan, N., Babic, V., Ro, K., Bandara, M., Smyth, S. J., Cui, Y., & Kagale, S., 2021. Crispr/cas9 gene editing in legume crops: Opportunities and challenges. Legume Science, 3(3). https://doi.org/10.1002/leg3.96
Bortesi, L., Fischer, R., 2015. The crispr/cas9 system for plant genome editing and beyond. Biotechnology Advances, 33(1), 41-52. https://doi.org/10.1016/j.biotechadv.2014.12.006
Bouzroud, S., Gasparini, K., Hu, G., Barbosa, M., Rosa, B., Fahr, M., Bendaou, N., Bouzayen, M., Zsögön, A., Smouni, A., & Zouine, M., 2020. Down regulation and loss of auxin response factor 4 function using crispr/cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes, 11(3), 272. https://doi.org/10.3390/genes11030272
Bunn, E., Turner, S., Dixon, K., 2011. Biotechnology for saving rare and threatened flora in a biodiversity hotspot. In Vitro Cellular & Developmental Biology - Plant, 47(1), 188-200. https://doi.org/10.1007/s11627-011-9340-0
Cadavid, J., Lamouri, S., Grabot, B., Pellerin, R., Fortin, A., 2020. Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. Journal of Intelligent Manufacturing, 31(6), 1531-1558. https://doi.org/10.1007/s10845-019-01531-7
Campos, N., Panis, B., Carpentier, S., 2017. Somatic embryogenesis in coffee: The evolution of biotechnology and the integration of omics technologies offer great opportunities. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01460
Cantone, I. Fisher, A., 2013. Epigenetic programming and reprogramming during development. Nature Structural & Molecular Biology, 20(3), 282-289. https://doi.org/10.1038/nsmb.2489
Čapla, J., Zajác, P., Čurlej, J., Hanušovský, O., 2025. The current state of carbon footprint quantification and tracking in the agri-food industry. Scifood, 19, 110-127. https://doi.org/10.5219/scifood.28
Ceasar, S., Ignacimuthu, S., 2010. Effects of cytokinins, carbohydrates and amino acids on induction and maturation of somatic embryos in kodo millet (Paspalum scorbiculatum linn.). Plant Cell Tissue and Organ Culture (Pctoc), 102(2), 153-162. https://doi.org/10.1007/s11240-010-9716-6
Chavan, J., Patil, P., Patil, A., Deshmukh, A., Panari, P., Mohite, A., Lawand, P., Yadav, P., Bodhe, M., Kadam, A., Namdas, D., Pawar, B., Jadhav, A., Shekhawat, M., & Santa-Catarina, C., 2024. Salacia spp.: Recent insights on biotechnological interventions and future perspectives. Applied Microbiology and Biotechnology, 108(1). https://doi.org/10.1007/s00253-023-12998-z
Coelho, N., Gonçalves, S., Romano, A., 2020. Endemic plant species conservation: biotechnological approaches. Plants, 9(3), 345. https://doi.org/10.3390/plants9030345
Coenen, C., Christian, M., Lüthen, H., Lomax, T., 2003. Cytokinin inhibits a subset of diageotropica-dependent primary auxin responses in tomato. Plant Physiology, 131(4), 1692-1704. https://doi.org/10.1104/pp.102.016196
Condic, M., (2014). Totipotency: What it is and what it is not. Stem Cells and Development, 23(8), 796-812. https://doi.org/10.1089/scd.2013.0364
Das, B., Bhattarai, A,. 2025. The versatility of algae in addressing the global sustainability challenges. Frontiers in Bioengineering and Biotechnology, 13. https://doi.org/10.3389/fbioe.2025.1621817
El‐Showk, S., Ruonala, R., Helariutta, Y., 2013. Crossing paths: Cytokinin signalling and crosstalk. Development, 140(7), 1373-1383. https://doi.org/10.1242/dev.086371
Esyanti, R., Fadholi, M., Rizki, R., Faizal, A., 2019. Shoot multiplication and growth rates of Aquilaria malaccensis lamk. shoot cultures in temporary immersion system (tis)-rita® and bubble column bioreactors. Pakistan Journal of Botany, 51(4). https://doi.org/10.30848/pjb2019-4(36)
Fakhrzad, F., Jowkar, A., Hosseinzadeh, J., 2022. Mathematical modeling and optimizing the in vitro shoot proliferation of wallflower using multilayer perceptron non-dominated sorting genetic algorithm-ii (mlp-nsgaii). Plos One, 17(9), e0273009. https://doi.org/10.1371/journal.pone.0273009
Feng, D., Xia, G., Zhao, S., Chen, F., 2004. Two quality-associated hmw glutenin subunits in a somatic hybrid line between Triticum aestivum and Agropyron elongatum. Theoretical and Applied Genetics, 110(1), 136-144. https://doi.org/10.1007/s00122-004-1810-x
Fki, L., Bouaziz, N., Kriaâ, W., Benjemaa-Masmoudi, R., Gargouri‐Bouzid, R., Rival, A., & Drira, N., 2011. Multiple bud cultures of ‘barhee’ date palm (Phoenix dactylifera) and physiological status of regenerated plants. Journal of Plant Physiology, 168(14), 1694-1700. https://doi.org/10.1016/j.jplph.2011.03.013
Fonsah, E., Adamu, C., Okole, B., Mullinix, B., 2007. Field evaluation of cavendish banana cultivars propagated either by suckers or by tissue culture, over six crop cycles in the tropics. Fruits, 62(4), 205-212. https://doi.org/10.1051/fruits:2007016
Gamborg, O. L., 2002. Plant tissue culture. Biotechnology milestones. In Vitro Cellular & Developmental Biology – Plant, 38(2), 84–92.
Gao, C., 2021. Genome engineering for crop improvement and future agriculture. Cell, 184(6), 1621-1635. https://doi.org/10.1016/j.cell.2021.01.005
Gautheret, R. J., 1985. History of plant tissue and cell culture: A personal account. Cell Culture and Somatic Cell Genetics of Plants, 2, 1-59.
Georgiev, V., Schumann, A., Pavlov, A., Bley, T., 2014. Temporary immersion systems in plant biotechnology. Engineering in Life Sciences, 14(6), 607-621. https://doi.org/10.1002/elsc.201300166
Greplová, M., Polzerová, H., Vlastníková, H., 2008. Electrofusion of protoplasts from Solanum tuberosum, S. bulbocastanum and S. pinnatisectum. Acta Physiologiae Plantarum, 30(6), 787-796. https://doi.org/10.1007/s11738-008-0183-1
Grosser, J. Gmitter, F., 2010. Protoplast fusion for production of tetraploids and triploids: Applications for scion and rootstock breeding in citrus. Plant Cell Tissue and Organ Culture (Pctoc), 104(3), 343-357. https://doi.org/10.1007/s11240-010-9823-4
Grzebelus, E., Szklarczyk, M., Barański, R., 2011. An improved protocol for plant regeneration from leaf- and hypocotyl-derived protoplasts of carrot. Plant Cell Tissue and Organ Culture (Pctoc), 109(1), 101-109. https://doi.org/10.1007/s11240-011-0078-5
Haberlandt, G., 1902. Cellular totipotency. Elsevier Science Publishing Co., New York, 71–90.
Hang, J., Zhang, D., Chen, P., Zhang, J., Wang, B., 2019. Classification of plant leaf diseases based on improved convolutional neural network. Sensors, 19(19), 4161. https://doi.org/10.3390/s19194161
Hesami, M., Condori‐Apfata, J., Valencia, M., Mohammadi, M., 2020. Application of artificial neural network for modeling and studying in vitro genotype-independent shoot regeneration in wheat. Applied Sciences, 10(15), 5370. https://doi.org/10.3390/app10155370
Hesami, M., Naderi, R., Tohidfar, M., 2019. Modeling and optimizing medium composition for shoot regeneration of chrysanthemum via radial basis function-non-dominated sorting genetic algorithm-ii (rbf-nsgaii). Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-54257-0
Hoque, F., Robbani, M., Hasan, M., Parvin, J., 2018. Standardization of protocol for in vitro propagation of banana (Musa sapientum). Journal of the Bangladesh Agricultural University, 16(1), 27-30. https://doi.org/10.3329/jbau.v16i1.36477
Ikeuchi, M., Sugimoto, K., Iwase, A., 2013. Plant callus: mechanisms of induction and repression. The Plant Cell, 25(9), 3159-3173. https://doi.org/10.1105/tpc.113.116053
Iovene, M., Aversano, R., Savarese, S., Caruso, I., Matteo, A., Cardi, T., Frusciante, L., & Carputo, D., 2012. Interspecific somatic hybrids between Solanum bulbocastanum and S. tuberosum and their haploidization for potato breeding. Biologia Plantarum, 56(1), 1-8. https://doi.org/10.1007/s10535-012-0008-3
Irish, E., Nelson, T., 1988. Development of maize plants from cultured shoot apices. Planta, 175(1), 9-12. https://doi.org/10.1007/bf00402876
Jadhav, N., Rajnivas, B., Subaprıya, V., Sivaramakrishnan, S., Premalatha, S., 2023. Enhancing crop growth efficiency through iot-enabled smart farming system. Eai Endorsed Transactions on Internet of Things, 10. https://doi.org/10.4108/eetiot.4604
Jaganathan, D., Ramasamy, K., Sellamuthu, G., Shilpha, J., Venkataraman, G., 2018. Crispr for crop improvement: An update review. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00985
Jaiswal, S., Hammatt, N., Bhojwani, S., Cocking, E., Davey, M., 1990. Plant regeneration from cotyledon protoplasts of Brassica carinata. Plant Cell Tissue and Organ Culture (Pctoc), 22(3), 159-165. https://doi.org/10.1007/bf00033630
Jamil, S., Shahzad, R., Talha, G., Sakhawat, G., Sultana, R., Iqbal, M., 2017. Optimization of protocols for in vitro regeneration of sugarcane (Saccharum officinarum). International Journal of Agronomy, 2017, 1-8. https://doi.org/10.1155/2017/2089381
Jeong, Y., Lee, H., Kim, S., Noh, Y., Seo, P., 2021. Optimization of protoplast regeneration in the model plant Arabidopsis thaliana. Plant Methods, 17(1). https://doi.org/10.1186/s13007-021-00720-x
Jing, Y., Beleski, D., Vendrame, W., 2023. Micropropagation and acclimatization of Monstera deliciosa liebm. ‘thai constellation’. Horticulturae, 10(1), 1. https://doi.org/10.3390/horticulturae10010001
Jiroutová, P., Sedlák, J., 2020. Cryobiotechnology of plants: A hot topic not only for gene banks. Applied Sciences, 10(13), 4677. https://doi.org/10.3390/app10134677
Jova, M., Gómez-Kosky, R., Pérez, M., Pino, A., Vega, V., Torres, J., Cabrera, A., García, M., & de Ventura, J., 2005. Production of yam microtubers using a temporary immersion system. Plant Cell Tissue and Organ Culture (Pctoc), 83(1), 103-107. https://doi.org/10.1007/s11240-005-4853-z
Kang, H., Naing, A., Kim, C., 2020. Protoplast isolation and shoot regeneration from protoplast-derived callus of Petunia hybrida cv. mirage rose. Biology, 9(8), 228. https://doi.org/10.3390/biology9080228
Katel, S., Yadav, S., Turyasingura, B., Mehta, A., 2023. Salicornia as a salt-tolerant crop: Potential for addressing climate change challenges and sustainable agriculture development. Turkish Journal of Food and Agriculture Sciences, 5(2), 55-67. https://doi.org/10.53663/turjfas.1280239
Kaur, K., Dolker, D., Behera, S., Pati, P., 2022. Critical factors influencing in vitro propagation and modulation of important secondary metabolites in Withania somnifera (L.) dunal. Plant Cell Tissue and Organ Culture (Pctoc), 149(1-2), 41-60. https://doi.org/10.1007/s11240-021-02225-w
Khatun, M., Hossain, M., Khalekuzzan, M., Rownaq, A., 2016. Comparative study on meristem culture of three potato cultivars diamant, cardinal and granula and their shoot formation. Asian Journal of Medical and Biological Research, 1(3), 537-544. https://doi.org/10.3329/ajmbr.v1i3.26477
Kim, J., Sasaki, T., Ueda, M., Sako, K., Seki, M., 2015. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00114
Kotte, W. 1922. Kulturversuche mit isolierten Wurzelspitzen. Beiträge zur Allgemeinen Botanik, 2, 413–434.
Kunakhonnuruk, B., Inthima, P., Kongbangkerd, A., 2019. In vitro propagation of rheophytic orchid, epipactis flava seidenf. A comparison of semi-solid, continuous immersion and temporary immersion systems. Biology, 8(4), 72. https://doi.org/10.3390/biology8040072
Lee, K., Zhang, Y., Kleinstiver, B., Guo, J., Aryee, M., Miller, J., Malzahn, A., Zarecor, S., Lawrence-Dill, C. J., Joung, J. K., Qi, Y., & Wang, K., 2018. Activities and specificities of crispr/cas9 and cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnology Journal, 17(2), 362-372. https://doi.org/10.1111/pbi.12982
Lee, H. T., Oh, S., Yoo, H., Kwon, Y. W., 2020. The key role of DNA methylation and histone acetylation in epigenetics of atherosclerosis. Journal of Lipid and Atherosclerosis, 9(3), 419.
Li, Q., Deng, C., Ma, Y., Kong, L., Zhang, H., Zhang, S., & Wang, J., 2017. Identification of novel mirnas and mirna expression profiling in embryogenic tissues of Picea balfouriana treated by 6-benzylaminopurine. Plos One, 12(5), e0176112. https://doi.org/10.1371/journal.pone.0176112
Li, Z., Jarret, R., Pittman, R., Dunbar, K., Demski, J., 1993. Efficient plant regeneration from protoplasts of Arachis paraguariensis chod. et hassl. using a nurse culture method. Plant Cell Tissue and Organ Culture (Pctoc), 34(1), 83-90. https://doi.org/10.1007/bf00048467
Liu, N., Han, Q., Wang, L., Liu, C., Yu, H., Zhou, H., Wei, M., & Li, Z., 2025. Zfp560 facilitates kap1-dependent chromatin repression to regulate exit from totipotency. https://doi.org/10.21203/rs.3.rs-7290036/v1
Loan, N., Giáp, Đ., Tuấn, T., Hien, N., Huy, N., Du, T. X., & Nhựt, D., 2018. Primary and secondary somatic embryogenesis in Jatropha curcas L. from leaf transverse thin cell layers. Vietnam Journal of Biotechnology, 14(4), 661-671. https://doi.org/10.15625/1811-4989/14/4/12299.
Loudon, P., Nelson, R., Ingram, D., 1989. Studies of protoplast culture and plant regeneration from commercial and rapid-cyclingbrassica species. Plant Cell Tissue and Organ Culture (Pctoc), 19(3), 213-224. https://doi.org/10.1007/bf00043348
Maćkowska, K., Stelmach, K., Grzebelus, E., 2023. Early selection of carrot somatic hybrids: A promising tool for species with high regenerative ability. Plant Methods, 19(1). https://doi.org/10.1186/s13007-023-01080-4
Malnoy, M., Viola, R., Jung, M., Koo, O., Kim, S., Kim, J., Velasco, R., & Nagamangala Kanchiswamy, C., 2016. Dna-free genetically edited grapevine and apple protoplast using crispr/cas9 ribonucleoproteins. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01904
Martinelli, L., Gribaudo, I. 2001. Somatic embryogenesis in grapevine. In Molecular Biology & Biotechnology of The Grapevine. Dordrecht: Springer Netherlands. 327-351. https://doi.org/10.1007/978-94-017-2308-4_13
Martos, V., Ali, A., Cartujo, P., Ordóñez, J., 2021. Ensuring agricultural sustainability through remote sensing in the era of agriculture 5.0. Applied Sciences, 11(13), 5911. https://doi.org/10.3390/app11135911
Melviana, A., Esyanti, R., Setyobudi, R., Mel, M., Adinurani, P., Burlakovs, J., 2021. Gene expression related to steviol glycoside synthesis produced in Stevia rebaudiana (bert.) shoot culture induced with high far-red led light in tis rita® bioreactor system. Sarhad Journal of Agriculture, 37(1). https://doi.org/10.17582/journal.sja/2021/37.1.1.8
Meyer, L., Serek, M., Winkelmann, T., 2009. Protoplast isolation and plant regeneration of different genotypes of petunia and calibrachoa. Plant Cell Tissue and Organ Culture (Pctoc), 99(1), 27-34. https://doi.org/10.1007/s11240-009-9572-4
Mliki, A., Jardak, R., Reustle, G., Ghorbel, A., 2003. Isolation and culture of leaf protoplasts from tunisian grapes. Oeno One, 37(3), 145. https://doi.org/10.20870/oeno-one.2003.37.3.952
Mohr, S., Kühl, R., 2021. Acceptance of artificial intelligence in german agriculture: An application of the technology acceptance model and the theory of planned behavior. Precision Agriculture, 22(6), 1816-1844. https://doi.org/10.1007/s11119-021-09814-x
Mok, M., Martin, R., Dobrev, P., Vaňková, R., Ho, P., Yonekura‐Sakakibara, K., Sakakibara, H., & Mok, D., 2005. Topolins and hydroxylated thidiazuron derivatives are substrates of cytokinin o-glucosyltransferase with position specificity related to receptor recognition. Plant Physiology, 137(3), 1057-1066. https://doi.org/10.1104/pp.104.057174
Mordocco, A., Brumbley, J., Lakshmanan, P., 2008. Development of a temporary immersion system (rita®) for mass production of sugarcane (Saccharum spp. interspecific hybrids). In Vitro Cellular & Developmental Biology - Plant, 45(4), 450-457. https://doi.org/10.1007/s11627-008-9173-7
Mosoh, D., Khandel, A., Verma, S., Vendrame, W., 2024. Optimizing callus induction and indirect organogenesis in non-dormant corm explants of Gloriosa superba (L.) via media priming. Frontiers in Horticulture, 3. https://doi.org/10.3389/fhort.2024.1378098
Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497
Musa, S., Basir, K., Luah, E., 2021. The role of smart farming in sustainable development. International Journal of Asian Business and Information Management, 13(2), 1-12. https://doi.org/10.4018/ijabim.20220701.oa5
Muthuramalingam, P., Jeyasri, R., Rakkammal, K., Satish, L., Shamili, S., Karthikeyan, A., Valliammai, A., Priya, A., Selvaraj, A., Gowri, P., Wu, Q.-S., Karutha Pandian, S., Shin, H., Chen, J.-T., Baskar, V., Thiruvengadam, M., Akilan, M., & Ramesh, M., 2022. Multi-omics and integrative approach towards understanding salinity tolerance in rice: A review. Biology, 11(7), 1022. https://doi.org/10.3390/biology11071022
Naranjo-Torres, J., Mora, M., Fredes, C., Valenzuela, A., 2021. Disease and defect detection system for raspberries based on convolutional neural networks. Applied Sciences, 11(24), 11868. https://doi.org/10.3390/app112411868
Nasirahmadi, A., Hensel, O., 2022. Toward the next generation of digitalization in agriculture based on digital twin paradigm. Sensors, 22(2), 498. https://doi.org/10.3390/s22020498
Özsan, T., Onus, A., 2020. Callogenesis optimization of some globe artichoke [Cynara cardunculus var. scolymus (L.) fiori] cultivars based on in vivo and in vitro leaf explants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 1873-1884. https://doi.org/10.15835/nbha48412089
Paek, K., Chakrabarty, D., Hahn, E., 2005. Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tissue and Organ Culture (Pctoc), 81(3), 287-300. https://doi.org/10.1007/s11240-004-6648-z
Patil, R., Kumar, S., Chiwhane, S., Rani, R., Pippal, S., 2022. An artificial-intelligence-based novel rice grade model for severity estimation of rice diseases. Agriculture, 13(1), 47. https://doi.org/10.3390/agriculture13010047
Pepe, M., Hesami, M., Small, F. Jones, A., 2021. Comparative analysis of machine learning and evolutionary optimization algorithms for precision micropropagation of Cannabis sativa: Prediction and validation of in vitro shoot growth and development based on the optimization of light and carbohydrate sources. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.757869
Phillips, G., Collins, G., 1979. Virus symptom‐free plants of red clover using meristem culture1. Crop Science, 19(2), 213-216. https://doi.org/10.2135/cropsci1979.0011183x001900020010x
Phillips, G. C., Garda, M., 2019. Plant tissue culture media and practices: An overview. In Vitro Cellular & Developmental Biology – Plant, 55(3), 242–257.
Philpott, M., Pence, V., Bassüner, B., Clayton, A., Coffey, E., Downing, J. L., Edwards, C. E., Folgado, R., Ligon, J. J., Powell, C., Ree, J. F., Seglias, A. E., Sugii, N., Zale, P. J., & Zeldin, J., 2022. Harnessing the power of botanical gardens: Evaluating the costs and resources needed for exceptional plant conservation. Applications in Plant Sciences, 10(5). https://doi.org/10.1002/aps3.11495
Pischke, M., Huttlin, E., Hegeman, A., Sussman, M., 2006. A transcriptome-based characterization of habituation in plant tissue culture. Plant Physiology, 140(4), 1255-1278. https://doi.org/10.1104/pp.105.076059
Qiang, B., Miao, J., Phillips, N., Wei, K., Gao, Y., 2020. Recent advances in the tissue culture of american ginseng (Panax quinquefolius). Chemistry & Biodiversity, 17(10). https://doi.org/10.1002/cbdv.202000366
Raghavan, V. 1980. Embryo culture. International Review of Cytology. Supplement, 11B, 209–240.
Raghu, A., Unnikrishnan, K., Geetha, S., Martin, G., Balachandran, I., 2011. Plant regeneration and production of embelin from organogenic and embryogenic callus cultures of Embelia ribes burm. f. A vulnerable medicinal plant. In Vitro Cellular & Developmental Biology - Plant, 47(4), 506-515. https://doi.org/10.1007/s11627-011-9365-4
Ramasubramanian, A., Mathew, R., Kelly, M., Hargaden, V., Papakostas, N., 2022. Digital twin for human–robot collaboration in manufacturing: review and outlook. Applied Sciences, 12(10), 4811. https://doi.org/10.3390/app12104811
Rasmussen, J., Rasmussen, O., 1995. Characterization of somatic hybrids of potato by use of rapd markers and isozyme analysis. Physiologia Plantarum, 93(2), 357-364. https://doi.org/10.1034/j.1399-3054.1995.930222.x
Reinert, J. 1958. Morphogenese und ihre Kontrolle an Gewebekulturen aus Karotten. Naturwissenschaft, 45, 344–345.
Richardson, K., Wetten, A., Caligari, P., 2001. Cell and nuclear degradation in root meristems following exposure of potatoes (Solanum tuberosum L.) to salinity. Potato Research, 44(4), 389-399. https://doi.org/10.1007/bf02358598
Robbins, W. J., 1922. Cultivation of excised root tips and stem tips under sterile conditions. Botanical Gazette, 73, 376–390.
Sarkar, D., Tiwari, J., Sharma, S., Poonam, P., Sharma, S., Gopal, J., Singh, B. P., Luthra, S. K., Pandey, S. K., & Pattanayak, D., 2011. Production and characterization of somatic hybrids between Solanum tuberosum L. and S. pinnatisectum dun. Plant Cell Tissue and Organ Culture (Pctoc), 107(3), 427-440. https://doi.org/10.1007/s11240-011-9993-8
Sedlák, P., Sedláková, V., Vašek, J., Zeka, D., Čílová, D., Melounová, M., Orsák, M., Domkářová, J., Doležal, P., & Vejl, P., 2022. Phenotypic, molecular and biochemical evaluation of somatic hybrids between Solanum tuberosum and S. bulbocastanum. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-08424-5
Shi, J., Gao, H., Wang, H., Lafïtte, H., Archibald, R., Yang, M., Hakimi, S. M., Mo, H., & Habben, J., 2016. Argos8 variants generated by crispr‐cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2), 207-216. https://doi.org/10.1111/pbi.12603
Skoog, F., Miller, C. O. 1957. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symposium of the Society for Experimental Biology, 11, 118–131.
Smyda‐Dajmund, P., Śliwka, J., Wasilewicz‐Flis, I., Jakuczun, H., Zimnoch‐Guzowska, E., 2016. Genetic composition of interspecific potato somatic hybrids and autofused 4x plants evaluated by dart and cytoplasmic DNA markers. Plant Cell Reports, 35(6), 1345-1358. https://doi.org/10.1007/s00299-016-1966-2
Smýkalová, I., Doležal, K., Plačková, L., Plíhalová, L., Zatloukal, M., Griga, M., 2025. The effect of supplementing in vitro flax (Linum usitatissimum L.) culture media with a synthetic cytokinin derivative (bap9 thp) and a cytokinin metabolism modulator (incyde). Plant Growth Regulation, 105(4), 1125-1138. https://doi.org/10.1007/s10725-025-01326-2
Steward, F. C., Mapes, M. O., Mears, K., 1958. Growth and development of cultured cells. II. Organization in cultures grown from freely suspended cells. American Journal of Botany, 45, 705–708.
Streczynski, R., Clark, H., Whelehan, L., Ang, S., Hardstaff, L., Funnekotter, B., Bunn, E., Offord, C. A., Sommerville, K. D., & Mancera, R., 2019. Current issues in plant cryopreservation and importance for ex situ conservation of threatened australian native species. Australian Journal of Botany, 67(1), 1-15. https://doi.org/10.1071/bt18147
Street, H. E., 1969. Growth in organized and unorganized systems. In: Steward, F. C. (Ed.), Plant physiology, Vol. 5B. Academic Press, New York, 3–224.
Su, Y., Tang, L., Zhao, X. Zhang, X., 2020. Plant cell totipotency: insights into cellular reprogramming. Journal of Integrative Plant Biology, 63(1), 228-243. https://doi.org/10.1111/jipb.12972
Sun, C., Ali, K., Yan, K., Fiaz, S., Dormatey, R., Bi, Z., & Bai, J., 2021. Exploration of epigenetics for improvement of drought and other stress resistance in crops: A review. Plants, 10(6), 1226. https://doi.org/10.3390/plants10061226
Suprasanna, P., Jain, S., 2023. Editorial: Innovative technologies and advancements in designing custom-made ornamental plants. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1348949
Surani, M. 2001. Reprogramming of genome function through epigenetic inheritance. Nature, 414(6859), 122-128. https://doi.org/10.1038/35102186
Szewczyk, A., Grabowski, M., Zych, D., 2023. Ruta chalepensis L. in vitro cultures as a source of bioactive furanocoumarins and furoquinoline alkaloids. Life, 13(2), 457. https://doi.org/10.3390/life13020457
Thorpe, T. A. 2007. History of plant tissue culture. Molecular Biotechnology, 37(2), 169–180.
Tusa, N., Grosser, J., Gmitter, F., 1990. Plant regeneration of `valencia' sweet orange, `femminello' lemon, and the interspecific somatic hybrid following protoplasm fusion. Journal of the American Society for Horticultural Science, 115(6), 1043-1046. https://doi.org/10.21273/jashs.115.6.1043
Varadharajan, V., Radhika, R., Muthuramalingam, P., Runthala, A., Madhesh, V., Swaminathan, G., Murugan, P., Srinivasan, H., Park, Y., Shin, H., & Ramesh, M., 2025. Multi-omics approaches against abiotic and biotic stress—a review. Plants, 14(6), 865. https://doi.org/10.3390/plants14060865
Verma, V., Kumar, A., Chaudhary, P., Chauhan, S., Thakur, M., Bhargava, B., 2022. Meta-topolin mediated in vitro propagation in an ornamentally important crop iris × hollandica tub. cv. professor blaauw and genetic fidelity studies using scot markers.. https://doi.org/10.21203/rs.3.rs-1583057/v1
Villegas-Sánchez, E., Macías-Alonso, M., Osegueda‐Robles, S., Herrera-Isidrón, L., Núñez-Palenius, H., Marrero, J., 2021. In vitro culture of rosmarinus officinalis l. in a temporary immersion system: Influence of two phytohormones on plant growth and carnosol production. Pharmaceuticals, 14(8), 747. https://doi.org/10.3390/ph14080747
Vollmer, R., Espirilla, J., Espinoza, A., Villagaray, R., Castro, M., Pineda, S., Sánchez, J. C., Mello, A. F. S., & & Azevedo, V., 2024. Effect of gas exchange rate, vessel type, planting density, and genotype on growth, photosynthetic activity, and ion uptake of in vitro potato plants. Plants, 13(19), 2830. https://doi.org/10.3390/plants13192830
Wang, J., Sun, Y., Yan, S., Daud, M., Zhu, S., 2008. High frequency plant regeneration from protoplasts in cotton via somatic embryogenesis. Biologia Plantarum, 52(4), 616-620. https://doi.org/10.1007/s10535-008-0121-5
Wawrosch, C., Zotchev, S., 2021. Production of bioactive plant secondary metabolites through in vitro technologies—status and outlook. Applied Microbiology and Biotechnology, 105(18), 6649-6668. https://doi.org/10.1007/s00253-021-11539-w
White, P. R., 1934. Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiology, 9, 585–600.
Wu, J., Ferguson, A., Mooney, P., 2005. Allotetraploid hybrids produced by protoplast fusion for seedless triploid citrus breeding. Euphytica, 141(3), 229-235. https://doi.org/10.1007/s10681-005-7009-7
Xu, L., Najeeb, U., Raziuddin, R., Shen, W. Q., Shou, J. Y., Tang, G. X., & Zhou, W. J., 2009. Development of an efficient tissue culture protocol for callus formation and plant regeneration of wetland species Juncus effusus L. In Vitro Cellular & Developmental Biology-Plant, 45(5), 610-618. https://doi.org/10.1007/s11627-009-9228-4
Yadav, B., Pandit, D., Banjade, D., Mehata, D., Bhattarai, S., Bhandari, S., Ghimire, N. P., Yadav, P., & Paudel, P., 2024. Insights into the germplasm conservation and utilization: implications for sustainable agriculture and future crop improvement. Archives of Agriculture and Environmental Science, 9(1), 180-193.
https://doi.org/10.26832/24566632.2024.0901026
Yong, J., Ge, L., Ng, Y., Tan, S. 2009. The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules, 14(12), 5144-5164. https://doi.org/10.3390/molecules14125144
Zhang, T., Xiao, J., Zhao, Y., Zhang, Y., Jie, Y., Shen, D., Yue, C., Huang, J., Hua, Y., & Zhou, T., 2021. Comparative physiological and transcriptomic analyses reveal ascorbate and glutathione coregulation of cadmium toxicity resistance in wheat genotypes. BMC Plant Biology, 21(1). https://doi.org/10.1186/s12870-021-03225-w
Zhou, L., Dean, J., 2015. Reprogramming the genome to totipotency in mouse embryos. Trends in Cell Biology, 25(2), 82-91. https://doi.org/10.1016/j.tcb.2014.09.006
Ziarani, M., Tohidfar, M., Navvabi, M., 2022. Modeling and optimizing in vitro percentage and speed callus induction of carrot via multilayer perceptron-single point discrete ga and radial basis function. BMC Biotechnology, 22(1). https://doi.org/10.1186/s12896-022-00764-4
Zimmerman, J., 1993. Somatic embryogenesis: a model for early development in higher plants. The Plant Cell, 5(10), 1411. https://doi.org/10.2307/3869792