Biyoteknoloji ve Spor Bilimleri Uygulamaları
Özet
Referanslar
Ahmetov, I. I., & Fedotovskaya, O. N. (2015). Current progress in sports genomics. Advances in Clinical Chemistry, 70, 247–314. https://doi.org/10.1016/bs.acc.2015.03.003
Baker, J., Cobley, S., & Schorer, J. (Eds.). (2020). Talent identification and development in sport: International perspectives (2nd ed.). Routledge. https://doi.org/10.4324/9781003049111
Baoutina, A., Alexander, I. E., Rasko, J. E. J., & Emslie, K. R. (2010). Potential use of gene transfer in athletic performance enhancement. Molecular Therapy, 18(2), 422–428. https://doi.org/10.1038/mt.2009.288
Bishop, D. J., Botella, J., Genders, A. J., Lee, M. J.-C., Saner, N. J., Kuang, J., Yan, X., & Granata, C. (2019). High intensity exercise and mitochondrial biogenesis: Current controversies and future research directions. Physiology (Bethesda), 34(1), 56–70. https://doi.org/10.1152/physiol.00038.2018
Bouchard, C., Sarzynski, M. A., Rice, T. K., Kraus, W. E., Church, T. S., Sung, Y. J., Rao, D. C., & Rankinen, T. (2011). Genomic predictors of the maximal O₂ uptake response to standardized exercise training programs. Journal of Applied Physiology, 110(5), 1160–1170. https://doi.org/10.1152/japplphysiol.00973.2010
Camporesi, S., & McNamee, M. J. (2016). Ethics, genetic testing, and athletic talent: Children’s best interests, and the right to an open (athletic) future. Physiological Genomics, 48(3), 191–195. https://doi.org/10.1152/physiolgenomics.00104.2015
Clarke, S. F., Murphy, E. F., O'Sullivan, O., Lucey, A. J., Humphreys, M., Hogan, A., Hayes, P., O’Reilly, M., Jeffery, I. B., Wood Martin, R., Kerins, D. M., Quigley, E., Ross, R. P., O’Toole, P. W., Molloy, M. G., Falvey, E., Shanahan, F., & Cotter, P. D. (2014). Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 63(12), 1913–1920. https://doi.org/10.1136/gutjnl 2013 306541
Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z
Eynon, N., Ruiz, J. R., Oliveira, J., Duarte, J. A., Birk, R., & Lucia, A. (2013). Genes and elite athletes: A roadmap for future research. The Journal of Physiology, 591(13), 3069–3080. https://doi.org/10.1113/jphysiol.2012.248049
Eynon, N., Ruiz, J. R., Oliveira, J., Duarte, J. A., Birk, R., & Lucia, A. (2011). Genes and elite athletes: A roadmap for future research. Journal of Physiology, 589(13), 3063–3070. https://doi.org/10.1113/jphysiol.2011.207035
Filardo, G., Kon, E., Roffi, A., Di Matteo, B., Merli, M. L., & Marcacci, M. (2018). Stem cells in sport-related injuries. British Medical Bulletin, 127(1), 91–107. https://doi.org/10.1093/bmb/ldy017
Gastin, P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports Medicine, 31(10), 725–741. https://doi.org/10.2165/00007256-200131100-00003
Goodwin, M. L., Harris, J. E., Hernández, A., & Gladden, L. B. (2007). Blood lactate measurements and analysis during exercise: A guide for clinicians. Journal of Diabetes Science and Technology, 1(4), 558–569. https://doi.org/10.1177/193229680700100414
Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Materials, 4(7), 518–524. https://doi.org/10.1038/nmat1421
Huang, C. J., et al. (2020). Application of biotechnology in sports science. Sports Science Review, 29(3), 179–198.
Hull, D. (2020). Ethical issues in sports genomics: the role of privacy, consent and data protection. Sports Medicine, 50(1), 1–7. https://doi.org/10.1007/s40279-019-01211-5
Joyner, M. J., & Lundby, C. (2018). Concepts about VO2max and trainability are context dependent. Exercise and Sport Sciences Reviews, 46(3), 138–143. https://doi.org/10.1249/JES.0000000000000145
Kenney, W. L., et al. (2021). Physiology of Sport and Exercise. Human Kinetics.
Kos, M., et al. (2021). Wearable sensors for sports performance monitoring. Sensors, 21(23), 7892.
Martínez-Sanz, J. M., Sospedra, I., Ortiz, C. M., Baladía, E., Gil-Izquierdo, A., & Ortiz-Moncada, R. (2017). Intended or unintended doping? A review of the presence of doping substances in dietary supplements used in sports. Nutrients, 9(10), 1093. https://doi.org/10.3390/nu9101093
Mason, C., & Dunnill, P. (2008). A brief definition of regenerative medicine. Regenerative Medicine, 3(1), 1–5. https://doi.org/10.2217/17460751.3.1.1
Maughan, R. J., Burke, L. M., Dvorak, J., Larson-Meyer, D. E., Peeling, P., Phillips, S. M., ... & Engebretsen, L. (2018). IOC consensus statement: dietary supplements and the high-performance athlete. British Journal of Sports Medicine, 52(7), 439–455. https://doi.org/10.1136/bjsports-2018-099027
McNamee, M. J., & Phillips, N. (2009). Genetic testing and sports medicine ethics. Sports Medicine, 39(5), 339–344. https://doi.org/10.2165/00007256-200939050-00001
Miah, A. (2004). Genetically Modified Athletes: Biomedical Ethics, Gene Doping and Sport (1st ed.). Routledge. https://doi.org/10.4324/9780203643280
Miah, A., & Eassom, S. (2020). Sport, ethics and technology: doping, e-sports and the future of sport. Routledge Handbook of the Philosophy of Sport, 409–419.
Montgomery, H. E., Marshall, R., Hemingway, H., Myerson, S., Clarkson, P., Dollery, C., Hayward, M., Holliman, D. E., Jubb, M., World, M., Thomas, E. L., Brynes, A. E., Saeed, N., Barnard, M. L., Bell, J. D., Prasad, K., Rayson, M., Talmud, P. J., & Humphries, S. E. (1998). Human gene for physical performance. Nature, 393(6682), 221–222. https://doi.org/10.1038/30374
Mujika, I., et al. (2016). Metabolic profiling for endurance performance. Sports Medicine, 46(1), 69–78.
Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8), 773–785. https://doi.org/10.1038/nbt.2958
North, K. N., Yang, N., Wattanasirichaigoon, D., Mills, M., Easteal, S., & Beggs, A. H. (1999). A common nonsense mutation results in α-actinin-3 deficiency in the general population. Nature Genetics, 21(4), 353–354. https://doi.org/10.1038/7675
OECD. (2021). Biotechnology definition. OECD Science, Technology and Industry Scoreboard.
Panossian, A., & Wikman, G. (2010). Effects of adaptogens on the central nervous system and the molecular mechanisms associated with their stress—protective activity. Pharmaceuticals, 3(1), 188–224. https://doi.org/10.3390/ph3010188
Patti, G. J., Yanes, O., & Siuzdak, G. (2012). Innovation: Metabolomics: the apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13(4), 263–269. https://doi.org/10.1038/nrm3314 profiles.wustl.edu
Peake, J. M., et al. (2014). Monitoring the athlete training response: Relationships between training load, performance, and physiological adaptation. Sports Medicine, 44(Suppl 2), 147–156.
Peake, J. M., Suzuki, K., Wilson, G., Hordern, M., Nosaka, K., Mackinnon, L., & Coombes, J. S. (2012). Exercise‐induced muscle damage, plasma cytokines, and markers of neutrophil activation. Journal of Applied Physiology, 111(3), 792–800. https://doi.org/10.1152/japplphysiol.00577.2011
Pickering, C., & Kiely, J. (2017). The development of a genetic test for sports performance: The future for nutrigenomics. Genes & Nutrition, 12(1), 6. https://doi.org/10.1186/s12263-017-0570-8017-0570-8
Pickering, C., & Kiely, J. (2017). The development of a genetic test for sports performance: The future for nutrigenomics. Genes & Nutrition, 12(1), 6.
Pickering, C., & Kiely, J. (2017). The development of a genetic test for sports performance: The future for nutrigenomics. Genes & Nutrition, 12(1), 6.
Pickering, C., & Kiely, J. (2019). Do genetic tests for sports performance enhance performance? Sports Medicine, 49(2), 199–209.
Pingitore, A., Lima, G. P., Mastorci, F., Quinones, A., Iervasi, G., & Vassalle, C. (2015). Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition, 31(7–8), 916–922. https://doi.org/10.1016/j.nut.2015.02.005
Pitsiladis, Y. P., Durussel, J., Rabin, O., Saugy, M., & Schumacher, Y. O. (2014). Beyond gene doping: the future of performance enhancement monitoring. British Journal of Sports Medicine, 48(10), 820–822. https://doi.org/10.1136/bjsports-2014-093567
Pitsiladis, Y. P., Tanaka, M., Eynon, N., et al. (2016). Genomics of elite sporting performance: What little we know and necessary advances. British Journal of Sports Medicine, 50(21), 1257–1259. https://doi.org/10.1136/bjsports-2016-096664
Posthumus, M., Collins, M., van der Merwe, L., O'Cuinneagain, D., van der Merwe, W., Ribbans, W. J., & Schwellnus, M. P. (2009). Matrix metalloproteinase genes on chromosome 11q22 and the risk of anterior cruciate ligament (ACL) ruptures. Scandinavian Journal of Medicine & Science in Sports, 19(6), 835–843. https://doi.org/10.1111/j.1600-0838.2008.00854.x
Posthumus, M., Collins, M., van der Merwe, L., O'Cuinneagain, D., van der Merwe, W., Ribbans, W. J., & Schwellnus, M. P. (2012). Matrix metalloproteinase genes on chromosome 11q22 and the risk of anterior cruciate ligament (ACL) rupture. Scandinavian Journal of Medicine & Science in Sports, 22(4), 523–533. https://doi.org/10.1111/j.1600-0838.2010.01270.x
Sakharov, D. A., Maltseva, D. V., Riabenko, E. A., & Tonevitsky, A. G. (2019). Proteomic and metabolomic approaches for sports and exercise science. Molecular & Cellular Proteomics, 18(5), 857–872. https://doi.org/10.1074/mcp.R119.001488
Seshadri, D. R., Li, R. T., Voos, J. E., Rowbottom, J. R., Alfes, C. M., Zorman, C. A., & Drummond, C. K. (2021). Wearable sensors for monitoring the physiological and biochemical profile of the athlete. NPJ Digital Medicine, 4(1), 114. https://doi.org/10.1038/s41746-021-00526-9
Shaw, G., Lee-Barthel, A., Ross, M. L., Wang, B., & Baar, K. (2017). Vitamin C–enriched gelatin supplementation before intermittent activity augments collagen synthesis. American Journal of Clinical Nutrition, 105(1), 136–143. https://doi.org/10.3945/ajcn.116.138594
Sheth, U., et al. (2022). Efficacy of platelet-rich plasma in tendon and ligament injuries. The American Journal of Sports Medicine, 50(6), 1678–1689.
Shull, P. B., Jirattigalachote, W., Hunt, M. A., Cutkosky, M. R., & Delp, S. L. (2014). Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait & Posture, 40(1), 11–19. https://doi.org/10.1016/j.gaitpost.2014.03.189
Smith, J., & Jones, P. (2018). Sports science: A contemporary introduction. Routledge.
Sottas, P. E., Robinson, N., Rabin, O., & Saugy, M. (2011). The athlete biological passport. Clinical Chemistry, 57(7), 969–976. https://doi.org/10.1373/clinchem.2011.162271
Ünlü, Ç., Çeviker, A., Turgut, A.,Kusan, O., Tezcan, E., Gür, K., Yıldırım T. (2024). Examination of Mental Stamina and Athlete Injury Anxiety Levels of Wrestlers. International Journal of Disabilities Sports and Health Sciences, 7(1), 210-222. https://doi.org/10.33438/ijdshs.1381006
World Anti-Doping Agency. (2024). Prohibited List. Retrieved January 1, 2024, from World Anti-Doping Agency website.