Parmak İzi Analizlerinde Kemometrik Yaklaşımlar

Özet

Adli bilimler, suç olaylarının aydınlatılması için fiziksel ve biyolojik delilleri toplayıp analiz ederek; kişi, mekân ve nesneler arasındaki bağlantıları ortaya çıkarmayı hedefleyen disiplinler arası bir alandır. Adli bilimlerde önemli bir yer tutan parmak izi analizleri, bireye özgü papil hatlarından oluşan fiziksel veya biyolojik izlerin incelenmesi yoluyla suç mahallini şüphelilerle ilişkilendirmede kilit rol oynamaktadır. Ancak, bu analizlerdeki temel zorluk, elde edilen karmaşık verilerin (görüntüler, spektrumlar, kromatogramlar) görsel ve öznel değerlendirmelere dayanması, potansiyel bilgilerin gizlenmesi vb. durumlara yol açabilmesidir. Bu zorluklar, analizlerin nesnelliğini ve güvenilirliğini artırmak için istatistiksel ve çok değişkenli veri analizi yöntemlerinin kullanımını zorunlu kılmaktadır. Bu bağlamda, kimyasal verinin matematiksel ve istatistiksel modellerle incelenmesini sağlayan kemometrik yöntemler, karmaşık veri yapısını sadeleştirerek bilgiyi daha net ortaya çıkarmaktadır. Bu kitap bölümünde adli bilimlerde özellikle adli kimyada karmaşık bir problem olan parmak izi analizlerinin nesnel ve güvenilir bir şekilde değerlendirilmesi için kullanılan kemometrik veri işleme yöntemlerinin prensiplerini, uygulama alanlarını ve avantajlarını alana özgü örneklerle sistematik bir şekilde ortaya koymak amaçlanmıştır.

Referanslar

Adamowicz P, Bigosińska J, Gil D, Suchan M, Tokarczyk B. Drugs detection in fingerprints. J Pharm Biomed Anal [Internet]. 2024 Jan 20;238:115835. Available from: https://www.sciencedirect.com/science/article/pii/S0731708523006040

Jackson ARW, Jackson JM. Forensic Science. 3rd ed. England: Pearson Education; 2011. 1–14 p.

Morgan SL, Bartick E. New Methods for Trace Evidence Analysis. In: Blackledge RD, editor. Forensic Analysis on the Cutting Edge [Internet]. John Wiley and Sons; 2007. p. 333–74. Available from: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470166932

Wold S. Chemometrics; what do we mean with it, and what do we want from it? Chemom Intell Lab Syst [Internet]. 1995 Nov 1;30(1):109–15. Available from: https://www.sciencedirect.com/science/article/pii/0169743995000429

Cadd S, Islam M, Manson P, Bleay S. Fingerprint composition and aging: A literature review. Sci Justice [Internet]. 2015 Jul 1;55(4):219–38. Available from: https://www.sciencedirect.com/science/article/pii/S1355030615000131

Costa C, Ismail M, Stevenson D, Gibson B, Webb R, Bailey M. Distinguishing between Contact and Administration of Heroin from a Single Fingerprint using High Resolution Mass Spectrometry. J Anal Toxicol [Internet]. 2019 Apr 30;44(3):218. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7299524/

Gulekci Y, Cavus Yonar F, Ozseker PE, Gören İE, Daglioglu N. The other side of the paper as the evidence: impacts of fingermark development reagents on fingermark development and cocaine amount in cocaine-impregnated paper. Forensic Sci Med Pathol [Internet]. 2024 Oct 17;21(2):555–64. Available from: https://link.springer.com/article/10.1007/s12024-024-00897-2

Gemperline P. Practical Guide to Chemometrics [Internet]. Practical Guide to Chemometrics. CRC Press; 2006. 1–542 p. Available from: https://www.taylorfrancis.com/books/mono/10.1201/9781420018301/practical-guide-chemometrics-paul-gemperline

Singh S, Shakeel H, Sharma R. Overview of chemometrics in forensic toxicology. Egypt J Forensic Sci [Internet]. 2023 Dec 13;13(1):53. Available from: https://ejfs.springeropen.com/articles/10.1186/s41935-023-00371-0

Brereton RG. Pattern recognition in chemometrics. Chemom Intell Lab Syst [Internet]. 2015 Dec 15;149:90–6. Available from: https://www.sciencedirect.com/science/article/pii/S0169743915001604

Hazarika P, Russell DA. Advances in fingerprint analysis. Angew Chem Int Ed Engl [Internet]. 2012 Apr 10;51(15):3524–31. Available from: https://pubmed.ncbi.nlm.nih.gov/22461202/

Kindell J, Bridge C. Error rate and similarity determination of latent fingerprint chemistry via 1D GC and GC × GC–MS. Forensic Chem [Internet]. 2023 Sep 1;35:100521. Available from: https://www.sciencedirect.com/science/article/pii/S2468170923000577?ssrnid=4400849&dgcid=SSRN_redirect_SD

Brunelle E, Eldridge M, Halámek J. Determination of Time since Deposition of Fingerprints via Colorimetric Assays. ACS Omega [Internet]. 2021 May 18;6(19):12898–903. Available from: /doi/pdf/10.1021/acsomega.1c01344?ref=article_openPDF

de Souza MA, Santos AS, da Silva SW, Braga JWB, Sousa MH. Diffuse Reflectance FTIR of Latent Fingerprints and Discriminant Analysis for Sex Identification in Humans. J Braz Chem Soc [Internet]. 2023 Jan 1;34(6):819–25. Available from: https://www.scienceopen.com/document?vid=4050a019-7c6e-4e8d-a850-7e9295b47f75

Fikiet MA, Khandasammy SR, Mistek E, Ahmed Y, Halámková L, Bueno J, et al. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2018 May 15;197:255–60. Available from: https://www.sciencedirect.com/science/article/pii/S138614251830163X

Skoog DA., West DM., Holler FJ, Crouch SR. Fundamentals of analytical chemistry. 9th ed. Brooks/Cole, Cengage Learning; 2014.

Sauzier G, Van Bronswijk W, Lewis SW. Chemometrics in forensic science: approaches and applications. Analyst [Internet]. 2021 Apr 26;146(8):2415–48. Available from: https://pubs.rsc.org/en/content/articlehtml/2021/an/d1an00082a

Bevilacqua M, Nescatelli R, Bucci R, Magrì AD, Magrì AL, Marini F. Chemometric classification techniques as a tool for solving problems in analytical chemistry. J AOAC Int [Internet]. 2014 Jan [cited 2025 Nov 14];97(1):19–28. Available from: https://pubmed.ncbi.nlm.nih.gov/24672856/

Singh I, Juneja P, Kaur B, Kumar P, Haji Shabani M, Klodzinska E, et al. Pharmaceutical Applications of Chemometric Techniques. Int Sch Res Not [Internet]. 2013 Jan 1;2013(1):795178. Available from: /doi/pdf/10.1155/2013/795178

Brereton RG, Jansen J, Lopes J, Marini F, Pomerantsev A, Rodionova O, et al. Chemometrics in analytical chemistry-part II: modeling, validation, and applications. Anal Bioanal Chem [Internet]. 2018 Oct 1;410(26):6691–704. Available from: https://pubmed.ncbi.nlm.nih.gov/30073517/

Chauchard F, Cogdill R, Roussel S, Roger JM, Bellon-Maurel V. Application of LS-SVM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes. Chemom Intell Lab Syst [Internet]. 2004 May 28 [cited 2025 Nov 14];71(2):141–50. Available from: https://www.sciencedirect.com/science/article/pii/S0169743904000073

da Silva IN, Spatti DH, Flauzino RA, Liboni LHB, dos Reis Alves SF. Artificial neural networks: A practical course. Artificial Neural Networks: A Practical Course. Springer International Publishing; 2016. 1–307 p.

Otto M. Chemometrics [Internet]. Wiley; 2016. Available from: https://onlinelibrary.wiley.com/doi/book/10.1002/9783527699377

Taylor BJ. Methods and procedures for the verification and validation of artificial neural networks. 1st ed. Taylor BJ, editor. Springer US; 2006. 1–277 p.

Marini F, Bucci R, Magrì AL, Magrì AD. Artificial neural networks in chemometrics: History, examples and perspectives. Microchem J. 2008 Apr;88(2):178–85.

Tistaert C, Dejaegher B, Heyden Y Vander. Chromatographic separation techniques and data handling methods for herbal fingerprints: A review. Anal Chim Acta [Internet]. 2011 Apr 1;690(2):148–61. Available from: https://www.sciencedirect.com/science/article/pii/S0003267011002200

Goodarzi M, Russell PJ, Vander Heyden Y. Similarity analyses of chromatographic herbal fingerprints: A review. Anal Chim Acta [Internet]. 2013 Dec 4;804:16–28. Available from: https://www.sciencedirect.com/science/article/pii/S0003267013011884

Daszykowski M, Walczak B. Methods for the exploratory analysis of two-dimensional chromatographic signals. Talanta [Internet]. 2011 Jan 30;83(4):1088–97. Available from: https://www.sciencedirect.com/science/article/pii/S0039914010006715

Custers D, Courselle P, Apers S, Deconinck E. Chemometrical analysis of fingerprints for the detection of counterfeit and falsified medicines. Rev Anal Chem [Internet]. 2016 Dec 1;35(4):145–68. Available from: https://www.degruyterbrill.com/document/doi/10.1515/revac-2016-0013/html?srsltid=AfmBOooUEgjcWEjetZEfjDkGKtqbMXnjDwTgATFv9uHHjaE67idEhd3v

Jollife IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci [Internet]. 2016 Apr 13;374(2065). Available from: https://pubmed.ncbi.nlm.nih.gov/26953178/

F.R.S. KP. LIII. On lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philos Mag J Sci [Internet]. 1901 Nov;2(11):559–72. Available from: https://www.tandfonline.com/doi/abs/10.1080/14786440109462720

Bro R, Smilde AK. Principal component analysis. Anal Methods [Internet]. 2014 Apr 10;6(9):2812–31. Available from: https://pubs.rsc.org/en/content/articlehtml/2014/ay/c3ay41907j

Greenacre M, Groenen PJF, Hastie T, D’Enza AI, Markos A, Tuzhilina E. Principal component analysis. Nat Rev Methods Prim 2022 21 [Internet]. 2022 Dec 22 [cited 2025 Nov 14];2(1):100-. Available from: https://www.nature.com/articles/s43586-022-00184-w

Wehrens R. Chemometrics with R [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2020. (Use R!). Available from: http://link.springer.com/10.1007/978-3-662-62027-4

Coon AM, Beyramysoltan S, Musah RA. A chemometric strategy for forensic analysis of condom residues: Identification and marker profiling of condom brands from direct analysis in real time-high resolution mass spectrometric chemical signatures. Talanta [Internet]. 2019 Mar 1;194:563–75. Available from: https://www.sciencedirect.com/science/article/pii/S0039914018310191

Tharwat A, Gaber T, Ibrahim A, Hassanien AE. Linear discriminant analysis: A detailed tutorial. AI Commun [Internet]. 2017;30(2):169–90. Available from: https://scholar.google.com/scholar_url?url=https://journals.sagepub.com/doi/pdf/10.3233/AIC-170729&hl=tr&sa=T&oi=ucasa&ct=usl&ei=zyYXaYL9NZvJieoP1YSd0QY&scisig=ABGrvjLBabJcgIUUEU0WOumXfdME

Setser AL, Waddell Smith R. Comparison of variable selection methods prior to linear discriminant analysis classification of synthetic phenethylamines and tryptamines. Forensic Chem [Internet]. 2018 Dec 1;11:77–86. Available from: https://www.sciencedirect.com/science/article/pii/S2468170918300754

Bécue A, Champod C. Interpol review of fingermarks and other body impressions (2019 – 2022). Forensic Sci Int Synerg [Internet]. 2023 Jan 1;6:100304. Available from: https://www.sciencedirect.com/science/article/pii/S2589871X22000894

Bailey MJ, Ismail M, Bleay S, Bright N, Elad ML, Cohen Y, et al. Enhanced imaging of developed fingerprints using mass spectrometry imaging. Analyst [Internet]. 2013 Sep 30;138(21):6246–50. Available from: https://pubs.rsc.org/en/content/articlehtml/2013/an/c3an01204b

Patten DR, Paulson AE, Forsman TT, Lee YJ. Predicting Fingerprint Age Based on Ozonolysis Kinetics of Unsaturated Triacylglycerol Degradation. Anal Chem [Internet]. 2023 Aug 15;95(32):12047–53. Available from: https://pubmed.ncbi.nlm.nih.gov/37531602/

Rajs N, Harush-Brosh Y, Raisch R, Yakobi Arancibia R, Zoabi A, Golan GN, et al. Determining time since deposition of latent fingerprints on forensic adhesive tape using ultrafast DESI-MS and machine learning. Sci Reports 2025 151 [Internet]. 2025 May 26;15(1):18413-. Available from: https://www.nature.com/articles/s41598-025-02639-y

Hinners P, O’Neill KC, Lee YJ. Revealing Individual Lifestyles through Mass Spectrometry Imaging of Chemical Compounds in Fingerprints. Sci Reports 2018 81 [Internet]. 2018 Mar 26;8(1):5149-. Available from: https://www.nature.com/articles/s41598-018-23544-7

Souza MA, Santos AS, da Silva SW, Braga JWB, Sousa MH. Raman spectroscopy of fingerprints and chemometric analysis for forensic sex determination in humans. Forensic Chem [Internet]. 2022 Mar 1;27:100395. Available from: https://www.sciencedirect.com/science/article/pii/S2468170921000916

Bradshaw R, Denison N, Francese S. Implementation of MALDI MS profiling and imaging methods for the analysis of real crime scene fingermarks. Analyst [Internet]. 2017 May 2;142(9):1581–90. Available from: https://pubs.rsc.org/en/content/articlehtml/2017/an/c7an00218a

Ismail M, Stevenson D, Costa C, Webb R, De Puit M, Bailey M. Noninvasive Detection of Cocaine and Heroin Use with Single Fingerprints: Determination of an Environmental Cutoff. Clin Chem [Internet]. 2018 Jun 1;64(6):909–17. Available from: https://pubmed.ncbi.nlm.nih.gov/29567660/

Guo S, Popp J, Bocklitz T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning-based modeling. Nat Protoc [Internet]. 2021 Dec 1;16(12):5426–59. Available from: https://pubmed.ncbi.nlm.nih.gov/34741152/

Yayınlanan

11 Şubat 2026

Lisans

Lisans