Psikoaktif Maddelerin Parmak İzinden Tayini

Yazarlar

İnci Sağlam

Özet

Referanslar

Adamowicz P, Bigosińska J, Gil D, et al. Drugs detection in fingerprints. Journal of Pharmaceutical and Biomedical Analysis, 2024;238:115835. doi:10.1016/j.jpba.2023.115835

Girod A, Ramotowski R, Weyermann C. Composition of fingermark residue: A qualitative and quantitative review. Forensic Science International. 2012;223(1–3):10–24. doi:10.1016/j.forsciint.2012.05.018.

Bailey MJ, Bradshaw R, Francese S, et al. Rapid detection of cocaine, benzoylecgonine and methylecgonine in fingerprints using surface mass spectrometry. Analyst, 2015;140(18), 6254–6259. doi:10.1039/c5an00112a

Costa C, Ismail M, Stevenson D, et al. Distinguishing between contact and administration of heroin from a single fingerprint using high resolution mass spectrometry. Journal of Analytical Toxicology, 2020;44(3), 218–225. doi:10.1093/jat/bkz088

Ameline A, Gheddar L, Arbouche N, et al. Fingerprints: A new specimen for innovative applications for the detection of xenobiotics. Journal of Analytical Toxicology, 2022;46(9), e243–e247. doi:10.1093/jat/bkac091

Czekanski P, Fasola M, Allison J. A mechanistic model for the superglue fuming of latent fingerprints. Journal of Forensic Sciences, 2006;51(6), 1323–1328. doi:10.1111/j.1556-4029.2006.00258.x

Mong GM, Petersen CE, Clauss TRW. Advanced fingerprint analysis project fingerprint constituents (No. PNNL-13019). Pacific Northwest National Laboratory. 1999;1-40. doi:10.2172/14172 1999

Wolstenholme R, Bradshaw R, Clench MR, et al. Study of latent fingermarks by matrix-assisted laser desorption/ionisation mass spectrometry imaging of endogenous lipids. Rapid Communications in Mass Spectrometry, 2009;23(19), 3031–3039. doi:10.1002/rcm.4218

de Almeida CM, dos Santos NA, Lacerda V, et al. Applications of MALDI mass spectrometry in forensic science. Analytical and Bioanalytical Chemistry, 2024;416,5255–5280. doi:10.1007/s00216-024-05470-y

Day JS, Edwards HGM, Dobrowski SA, et al. The detection of drugs of abuse in fingerprints using Raman spectroscopy II: Cyanoacrylate-fumed fingerprints. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004;60(8–9),1725–1730. doi:10.1016/j.saa.2003.09.013

Brown HM, McDaniel TJ, Fedick PW, et al. The current role of mass spectrometry in forensics and future prospects. Analytical Methods. 2020;12(32),3974–3997. doi:10.1039/d0ay01113d

Jang M, Costa C, Bunch J, et al. On the relevance of cocaine detection in a fingerprint. Scientific Reports. 2020;6,10(1):1974. doi: 10.1038/s41598-020-58856-0.

Jacob S, Jickells S, Wolff K, et al. Drug testing by chemical analysis of fingerprint deposits from metha-done-maintained opioid dependent patients using UPLC-MS/MS. Drug Metabolism Letters. 2008 2(4):245-7. doi: 10.2174/187231208786734094

Zhang T, Chen X, Yang R, et al. Detection of methamphetamine and its main metabolite in fingermarks by liquid chromatography-mass spectrometry. Forensic Science International, 2015;248, 10–14. doi:10.1016/j.forsciint.2014.12.013

Ismail M, Costa C, Longman K, et al. Potential to use fingerprints for monitoring therapeutic levels of ısoniazid and treatment adherence. ACS Omega, 2022;7(17), 15167–15173. doi:10.1021/acsomega.2c01257

Kuwayama K, Tsujikawa K, Miyaguchi H, et al. Time-course measurements of caffeine and its metabolites extracted from fingertips after coffee intake: A preliminary study for the detection of drugs from fingerprints. Analytical and Bioanalytical Chemistry, 2013;405(12), 3945–3952. doi:10.1007/s00216-012-6569-3

Talaat R, Darwish S, Adel M, et al. Detection of some drugs of abuse from fingerprınts using liquid chromatography-Mass spectrometry. Egyptian Journal of Forensic Sciences and Applied Toxicology. 2017;17,2,73-91. doi: 10.21608/ejfsat.2017.46122

González M, Gorziza RP, de Cássia Mariotti K, et al. Methodologies applied to fingerprint analysis. Journal of Forensic Sciences. 2020;65(4): 1040–1048. doi:10.1111/1556-4029.14313

Takáts Z, Wiseman JM, Gologan B, et al. Mass spectrometry sampling under ambient conditions with desorption electrospray ıonization. Science. 2004;15;306(5695):471-473. doi: 10.1126/science.1104404

Costa C, Jang M, De Jesus J. et al. Imaging mass spectrometry: A new way to distinguish dermal contact from administration of cocaine, using a single fingerprint. Analyst, 2021;146(12), 4010–4021. doi:10.1039/d1an00232e

Ismail M, Stevenson D, Costa C, et al. Noninvasive detection of cocaine and heroin use with single fingerprints: Determination of an environmental cutoff. Clinical Chemistry, 2018;64(6), 909–917. doi:10.1373/clinchem.2017.281469

McDonnell LA, Heeren RMA. Imaging mass spectrometry. Mass Spectrometry Reviews 2007;26(4):606–643. Doi:10.1002/mas.20124

Bradshaw R, Rao W, Wolstenholme R, et al, Separation of overlapping fingermarks by Matrix Assisted Laser Desorption Ionisation Mass Spectrometry Imaging. Forensic Science International. 2012;222(1–3), 318–326. doi:10.1016/j.forsciint.2012.07.009

Ferguson L, Bradshaw R, Wolstenholme R, et al. Two-step matrix application for the enhancement and imaging of latent fingermarks.

Analytical Chemistry, 2011;83(14), 5585–5591. Doi:10.1021/ac200619f

Groeneveld G, De Puit M, B leay S, et al. Detection and mapping of illicit drugs and their metabolites in fingermarks by MALDI MS and compatibility with forensic techniques. Scientific Reports, 2015;5. Doi:10.1038/srep11716

Salomé PMP, Rodriguez-Alvarez H, Sadewasser S. Incorporation of alkali metals in chalcogenide solar cells. Solar Energy Materials and Solar Cells. 2015;143:9–20.V. doi:10.1016/j.solmat.2015.06.011

Bailey MJ, Ismail M, Bleay S, et al. Enhanced imaging of developed fingerprints using mass spectrometry imaging. Analyst, 2013;138(21), 6246–6250. doi:10.1039/c3an01204b

Szynkowska MI, Czerski K, Rogowski J, et al. ToF-SIMS application in the visualization and analysis of fingerprints after contact with amphetamine drugs. Forensic Science International, 2009;184(1–3). doi:10.1016/j.forsciint.2008.11.003

Ionoptica Ltd. Cocaine metabolite imaging in fingerprints with water ckuster SIMS. 2012. Available from:https://ionoptika.com/news/cocaine-metabolite-imaging-in-fingerprints-with-water-cluster-sims/ (Accessed 29 November 2025).

Mogk DW. Time-of-Flight Secondary Ion Mass Spectrometry (ToF SIMS) 2018. Available from:https://serc.carleton.edu/research_education/geochemsheets/techniques/ToFSIMS.html. Accessed:29 November 2025.

Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Analytical Chemistry, 2005;

77(8), 2297–2302. doi:10.1021/ac050162j

Lesiak AD, Shepard JRE. Recent advances in forensic drug analysis by DART-MS. Bioanalysis, 2014;6(6), 819–842. doi:10.4155/bio.14.31

Costa C, Webb R, Palitsin V, et al. Rapid, secure drug testing using fingerprint development and paper spray mass spectrometry. Clinical Chemistry, 2017; 63(11), 1745–1752. doi:10.1373/clinchem.2017.27557.8

Chiang S, Zhang W, Ouyang Z. Paper spray ionization mass spectrometry: recent advances and clinical applications. Expert Review of Proteomics, 2018;15(10), 781–789. doi:10.1080/14789450.2018.1525295

Bumbrah GS, Sharma RM. Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egyptian Journal of Forensic Sciences 2016;6(3);209–215. doi:10.1016/j.ejfs.2015.06.001

Holze RE. Modern Raman spectroscopy—a practical approach, 1st ed. Chichester:Wiley;2005.

Weyermann C, Mimoune Y, Anglada F, Applications of a transportable Raman spectrometer for the in situ detection of controlled substances at border controls. Forensic Science International, 2011;209(1–3), 21–28. doi:10.1016/j.forsciint.2010.11.027

West MJ, Went MJ. Detection of drugs of abuse by Raman spectroscopy. Drug Testing and Analysis. 2011;3(9):532–538. doi:10.1002/dta.217

Huynh C, Halámek J. Trends in fingerprint analysis. TrAC - Trends in Analytical Chemistry 2016;82,328–336. doi:10.1016/j.trac.2016.06.003

Bailey MJ, De Puit M, Romolo FS. Surface analysis techniques in forensic science: successes, challenges, and opportunities for operational deployment. Annual Review of Analytical Chemistry, 2022; 15(1), 173-196.

Yayınlanan

11 Şubat 2026

Lisans

Lisans