Parmak İzinin Doğası
Özet
Parmak izleri, bireye özgü morfolojik yapıları ve derinin karmaşık biyolojik sistemi sayesinde adli incelemelerde temel kimliklendirme aracı olarak kullanılır. Eşsizliği, farklı deri katmanlarının etkileşimi, bu katmanların oluşturduğu çıkıntılar ve ter gözeneklerinden kaynaklanır. Bu özellikler, her bireyin izlerinin başkasıyla tekrar etmeyecek ölçüde özel olmasını sağlar. Bununla birlikte, parmak izleri sınıflandırmayı kolaylaştıran ortak desenler içerir ve papil hattı örüntüleri bazal tabaka düzeyinde belirlendiği için çoğu darbe sonrası şekil bütünlüğünü korur. Parmak izleri kişi öldükten sonra dahi delil değerini kaybetmez, bu da onları adli incelemelerde güvenilir kılar. Parmak izinin doğası yalnızca eşsiz bireysellikten ibaret olmayıp, yapısal ve fonksiyonel özelliklerin bütünleştiği bir sistem olarak değerlendirilir. Bu sistem, izlerin oluşum sürecinden yani anne karnındaki gelişimden başlayarak yaşam boyunca ve ölüm sonrası delil değerini korumasına kadar kapsamlı bir perspektif sunar. Böylece parmak izleri, biyolojik temelleri ve eşsiz yapısıyla adli bilimlerde hem kimlik doğrulama hem de suçla mücadele açısından evrensel bir öneme sahiptir.
Referanslar
Figini A da L. Datiloscopia e revelação de impressões digitais. Campinas Millennium Editora. 2012.
Houck M. Forensic fingerprints. 1st ed. Amsterdam:Elsevier; 2016
Tortora GJ, Grabowski SR. Principles of anatomy and physiology. 7th ed. New York: Wiley; 1993.
Wertheim K, Maceo A. The critical stage of friction ridge pattern formation. J Forensic Identif. 2002;52(1):37.
Maceo AV. Anatomy and physiology of adult friction ridge skin. In: The fingerprint sourcebook. Washington; 2011. p. 2–4.
Cooper S. The biology of the skin. Freinkel RK, Woodman DA, editors. New York: Parthenon Publishing; 2001. P 71.
Yamashita B, French M. Latent print development. In: The fingerprint sourcebook. Washington; 2011. p. 3–67.
Bleay SM, de Puit M. Formation of fingermarks. In: Fingerprint Development Techniques: Theory and Application. John Wiley & Sons Ltd; 2018. p. 11–35.
Vincent P. Skin:A brief look under the surface. Fingerprint Whorld. 1985;11(41):8–12.
Scheibert J, Leurent S, Prevost A, et al., The Role of Fingerprints in the Coding of Tactile Information Probed with a Biomimetic Sensor. Science (1979). 2009 Mar 13;323(5920):1503–6.
Yum SM, Baek IK, Hong D, et al. Fingerprint ridges allow primates to regulate grip. Proceedings of the National Academy of Sciences. 2020 Dec 15;117(50):31665–73.
Hale A. Morphogenesis of volar skin in the human fetus. American Journal of Anatomy. 1952;91(1):147–81.
Biswas G. Review of Forensic Medicine and Toxicology : including clinical & pathological aspects. Jaypee Brothers Medical P; 2018.
Galton F. Fingerprints. Cosimo Classics. 1892.
Babler WJ. Embryologic development of epidermal ridges and their configurations. Birth Defects Orig Artic Ser. 1991;27(2):95–112.
Kaur J, Dhall M. Reproducibility of fingerprint microfeatures. Egypt J Forensic Sci [Internet]. 2022 Dec 1 [cited 2023 Oct 28];12(1):1–9. Available from: https://ejfs.springeropen.com/articles/10.1186/s41935-022-00266-6
Ashbaugh D. Quantitative-qualitative friction ridge analysis. Boca Raton,FL: CRC Press; 1999.
Preethi DS, Nithin MD, Manjunatha B. Et al., Study of Poroscopy Among South Indian Population*. J Forensic Sci. 2012 Mar 15;57(2):449–52.
Oklevski S. Poroscopy: Qualitative and Quantitative Analysis of the 2nd and 3rd Level Detail and their Relation. Fingerprint Whorld. 2011;37(145):170–81.
Ramotowski RS. Composition of Latent Print Residue CRC Press,. In: Lee HC, Gaensslen RE, editors. Advances in Fingerprint Technology. 2nd ed. Boca Raton, FL; 2001.
Saga K. Structure and function of human sweat glands studied with histochemistry and cytochemistry. Prog Histochem Cytochem. 2002 Jan;37(4):323–86.
Quinton PM. Sweating and its Disorders. Annu Rev Med. 1983 Feb;34(1):429–52.
Goldsmith L. Biochemistry and Physiology of the Skin. New York: Oxford University Press; 1983. p. 596–641.
Junqueira LCU, Carneiro J. Journal of basic histology. 10th ed. New York: Lange Medical Books; 2003. p. 369–380.
Olsen RD, Scatt WR. Scott’s fingerprint mechanics. Charles Thomas Publisher; 1978.
Anderson K, Anderson L, Glanze W. Mosby’s medical, nursing and allied health dictionary. 5th ed. Mosby, Incorporated; 1998. p. 1561.
Downing DT, Strauss JS. Synthesis and composition of surface lipids of human skin. Journal of Investigative Dermatology. 1974 Mar;62(3):228–44.
Akamatsu Hirohiko, Zouboulis CC, Orfanos CE. Control of Human Sebocyte Proliferation In Vitro by Testosterone and 5-Alpha-Dihydrotestosterone Is Dependent on the Localization of the Sebaceous Glands. Journal of Investigative Dermatology. 1992 Oct;99(4):509–11.
Croxton RS, Bleay SM, de Puit M. Composition and properties of fingermark. In: Bleay SM, Croxton RS, de Puit M, editors. Fingerprint Development Techniques: Theory and Application. Wiley; 2018. p. 35–68.
Bojar RA, Holland KT. Review: the human cutaneous microflora and factors controlling colonisation. World J Microbiol Biotechnol. 2002 Dec;18(9):889–903.
Croxton RS, Baron MG, Butler D, et al., Variation in amino acid and lipid composition of latent fingerprints. Forensic Sci Int. 2010 Jun;199(1–3):93–102.
Xu L, Zhang C, He Y, et al., Advances in the development and component recognition of latent fingerprints. Sci China Chem. 2015 Jul 3;58(7):1090–6.
Shelley WB. Apocrine sweat. Journal of investigative dermatology. 1951;17(255):255.
Cadd S, Islam M, Manson P, et al., Fingerprint composition and aging: A literature review. Science & Justice. 2015 Jul;55(4):219–38.
VanPutte C, Regan J, Russo A, et al., Seeley’s anatomy & physiology. 10th ed. McGraw-Hill; 2011. p. 692–694.
Noble WC. Microbiology of Human Skin. Moscow: Medicine; 1981.
Harper DR, Clare CM, Heaps CD, Brennan J, Hussain J. A bacteriological technique for the development of latent fingerprints. Forensic Sci Int. 1987 Mar;33(3):209–14.
Fierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proceedings of the National Academy of Sciences. 2008 Nov 18;105(46):17994–9.
Dorakumbura BN, Becker T, Lewis SW. Nanomechanical mapping of latent fingermarks: A preliminary investigation into the changes in surface interactions and topography over time. Forensic Sci Int. 2016 Oct;267:16–24.
Scruton B, Blott BH. Surface Potential of Finger Prints on Paper and Fabrics. University of Southampton. Physics Department: Report for PSDB; 1973.
Chizmadzhev YA, Indenbom A V., Kuzmin PI, et al., Electrical Properties of Skin at Moderate Voltages. Biophys J. 1998 Feb;74(2):843–56.
Hazarika P, Russell DA. Advances in Fingerprint Analysis. Angewandte Chemie International Edition. 2012 Apr 10;51(15):3524–31.
Maltoni D, Mario D, Jain AK, Prabhakar S. Introduction. In: Handbook of fingerprint recognition. 2nd ed. Springer; 2009. p. 1–56.
Barnes JG. History. In: The Fingerprint Sourcebook [Internet]. U.S. Dept. of Justice; 2011. Available from: www.nij.gov
Yount L. Forensic science: from fibers to fingerprints. New York: Chelsea House Publishers; 2007.
Lin C, Liu J, Osterburg J, et al., Fingerprint Comparison. I: Similarity of Fingerprints. J Forensic Sci. 1982 Apr 1;27(2):290–304.
Awad AI. Machine Learning Techniques for Fingerprint Identification: A Short Review. In 2012. p. 524–31.
Nagesh KR, Bathwal S, Ashoka B. A preliminary study of pores on epidermal ridges: Are there any sex differences and age related changes? J Forensic Leg Med. 2011 Oct;18(7):302–5.
Champod C, Lennard C, Margot P. Fingerprints and other ridge skin impressions. 2nd ed. New York: CRC Press; 2016.
Sears VG, Bleay SM, Bandey HL. et al., A methodology for finger mark research. Science & Justice. 2012 Sep;52(3):145–60.
Kumar R, Singh JP, Srivastava G. Altered Fingerprint Identification and Classification Using SP Detection and Fuzzy Classification. In: 2nd International Conference on Soft Computing for Problem Solving SocProS. 2012. p. 1343–9.
Girod A, Ramotowski R, Weyermann C. Composition of fingermark residue: A qualitative and quantitative review. Forensic Sci Int. 2012 Nov;223(1–3):10–24.
Ramasastry P, Downing DT, Pochi PE, et al., Chemical composition of human skin surface lipids from birth to puberty. Journal of Investigative Dermatology. 1970 Feb;54(2):139–44.
Ramotowski RS. Composition of Latent Print Residue CRC Press. In: Lee HC, Gaensslen RE, editors. Advances in Fingerprint Technology. 2nd ed. Boca Raton, FL; 2001.
Antoine KM, Mortazavi S, Miller AD, et al., Chemical Differences Are Observed in Children’s Versus Adults’ Latent Fingerprints as a Function of Time*. J Forensic Sci. 2010 Mar;55(2):513–8.
Stewart ME, Downing DT. Unusual Cholesterol Esters in the Sebum of Young Children. Journal of Investigative Dermatology. 1990 Nov;95(5):603–6.
Ichinose‐Kuwahara T, Inoue Y, Iseki Y, et al., Experimental Physiology – Research Paper: Sex differences in the effects of physical training on sweat gland responses during a graded exercise. Exp Physiol. 2010 Oct 2;95(10):1026–32.
Charkoudian N, Stachenfeld N. Sex hormone effects on autonomic mechanisms of thermoregulation in humans. Autonomic Neuroscience. 2016 Apr;196:75–80.
Firooz A, Sadr B, Babakoohi S, et al. Variation of Biophysical Parameters of the Skin with Age, Gender, and Body Region. The Scientific World Journal. 2012;2012:1–5.
Huynh C, Brunelle E, Halámková L, et al., Halámek J. Forensic Identification of Gender from Fingerprints. Anal Chem. 2015 Nov 17;87(22):11531–6.
Kapoor N, Badiye A. Sex differences in the thumbprint ridge density in a central Indian population. Egypt J Forensic Sci. 2015 Mar;5(1):23–9.
Kralik M, Novotny V. Epidermal ridge breadth: an indicator of age and sex in paleodermatoglyphics. Variability and Evolution. 2003;11:5–30.
Krishan K, Ghosh A, Kanchan T, et al., Sex differences in fingerprint ridge density – Causes and further observations. J Forensic Leg Med. 2010 Apr;17(3):172–3.
Ganceviciene R, Zouboulis CC. Isotretinoin: state of the art treatment for acne vulgaris. JDDG: Journal der Deutschen Dermatologischen Gesellschaft. 2010 Mar 16;8:47–59.
Shi VY, Leo M, Hassoun L, et al., Role of sebaceous glands in inflammatory dermatoses. J Am Acad Dermatol. 2015 Nov;73(5):856–63.
Strauss JS, Stranieri AM. Changes in long-term sebum production from isotretinoin therapy. J Am Acad Dermatol. 1982 Apr;6(4):751–5.
Cheshire WP, Fealey RD. Drug-induced hyperhidrosis and hypohidrosis. Drug Saf. 2008;31(2):109–26.
Al-Ahwal MS. Chemotherapy and Fingerprint Loss: Beyond Cosmetic. Oncologist. 2012 Feb 1;17(2):291–3.
Upshaw BY. Hereditary anhidrotic ectodermal dysplasia. Arch Derm Syphilol. 1949 Dec 1;60(6):1170.
Drahansky M, Dolezel M, Urbanek J. et al., Influence of Skin Diseases on Fingerprint Recognition. J Biomed Biotechnol. 2012;2012:1–14.
Azadeh P, Dashti-Khavidaki S, Joybari AY, et al. Fingerprint changes among cancer patients treated with paclitaxel. J Cancer Res Clin Oncol. 2017 Apr 17;143(4):693–701.
Sarfraz N. Adermatoglyphia: Barriers to Biometric Identification and the Need for a Standardized Alternative. Cureus. 2019 Feb 8.
James WD, Elston D, Berger T. Andrew’s diseases of the skin: clinical dermatology. Elsevier Health Sciences; 2011.
Habif TP. Clinical dermatology . Elsevier Health Sciences. 2015.
David TJ. Congenital malformations of human dermatoglyphs. Arch Dis Child. 1973 Mar 1;48(3):191–8.
Ramaswami U, Whybra C, Parini R, et al., Sunder-Plassmann G, et al. Clinical manifestations of Fabry disease in children: Data from the Fabry Outcome Survey. Acta Paediatr. 2006 Jan 1;95(1):86–92.
Lee CK, Chang CC, Johar A, et al., Fingerprint Changes and Verification Failure Among Patients With Hand Dermatitis. JAMA Dermatol. 2013 Mar 1;149(3):294.
Batool A, Shehzad F, Gul I. Identification and comparison of fingerprint damages among different occupations in Punjab, Pakistan for forensic casework. International Journal of Natural Medicine and Health Sciences. 2023;2(2):21–6.
Sharma R, Mukhopdhyay R, Tarunam A, et al., Personal identification from occupational marks present on the palm prints: A study of the urban region of New Delhi. Indian J Phys Anthropol Hum Genet. 2024;43(1):45–58.
Dhall JK, Kapoor AK. Development of latent prints exposed to destructive crime scene conditions using wet powder suspensions. Egypt J Forensic Sci. 2016 Dec;6(4):396–404.
Bleay SM, de Puit M. Ageing of fingermarks. In: Fingerprint Development Techniques: Theory and Application. 2018. p. 69–98.
Richmond‐Aylor A, Bell S, Callery P, et al., Thermal degradation analysis of amino acids in fingerprint residue by pyrolysis GC–MS to develop new latent fingerprint developing reagents. J Forensic Sci. 2007 Mar 16;52(2):380–2.
Gülekçi Y. Effects of environmental factors on fingerprint development. Avrupa Bilim ve Teknoloji Dergisi. 2021;32:463–70.
Wargacki SP, Lewis LA, Dadmun MD. Enhancing the Quality of Aged Latent Fingerprints Developed by Superglue Fuming: Loss and Replenishment of Initiator. J Forensic Sci. 2008 Sep 28;53(5):1138–44.
G. Ferreira R, B. A. Paula R, A. Okuma A, M. Costa L. Fingerprint development techniques: A review. Revista Virtual de Química. 2021;13(6):1278–302.
Champod C, Lennard C, Margot P, et al., Fingermark Detection and Enhancement. In: Fingerprints and Other Ridge Skin Impressions. 2nd ed. CRC Press; 2016.
Archer NE, Charles Y, Elliott JA, et al., Changes in the lipid composition of latent fingerprint residue with time after deposition on a surface. Forensic Sci Int. 2005 Nov;154(2–3):224–39.
Wertheim K. Fingerprint age determination: is there any hope? Journal of Forensic Identification. 2003;53(1):42–9.
Reed H, Stanton A, Wheat J, et al. The Reed-Stanton press rig for the generation of reproducible fingermarks: Towards a standardised methodology for fingermark research. Science & Justice. 2016 Jan;56(1):9–17.
Daluz HM. The Nature of Latent Prints. In: Fundamentals of Fingerprint Analysis. 2nd ed. Taylor & Francis; 2019. p. 83–93.
Czech A, Gryszczyk N, Szabelak A, et al., Changes in Fingerprints and the Quantity of Material Forming the Print Depending on Hand Cleanliness, Gender, and Ambient Conditions. J Forensic Sci. 2020 Jan 27;65(1):84–9.
Aseri V, Nagar V, Godara VR, et al. A comparative study on scanned fingerprint after applying lubricants and without scanned fingerprint on porous surface; (white paper). Mater Today Proc. 2022;69:1515–31.
Bleay SM. Evaluation and comparison of fingermark enhancement processes. In: Bleay SM, Croxton RS, de Puit M, editors. Fingerprint development techniques: Theory and application. 1st ed. Sandridge: wiley; 2018. p. 421–42.
Kaur T, Chitara N, Guleria A, et al. Development, detection and decipherment of obfuscated fingerprints in humans: Implications for forensic casework. The Science of Nature. 2023 Dec 4;110(6):55.
Suman A. Classification of arch test fingerprint verification result template features acquisition and preprocessing features extraction comparison knowledge base. Int J Math Comput Sci. 2012;17:289–307.
Harrison J, Beasley B, Baraniuk C, et al., Classification of images. OpenStax-CNX. 2004.
Cole SA. More than zero: Accounting for error in latent fingerprint identification. The Journal of Criminal Low and Criminology. 2004;95(3):985.
Sodhi GS, Kaur J. The forgotten Indian pioneers of fingerprint science. Curr Sci. 2005;88(1):185–91.
Singh RK, Sharma M, Tarannum A, A Case of Three Deltas in a Fingerprint. J Forensic Res. 2018;9(2).
Forensic Science Regulator. Fingerprint Examination - Terminology, Definitions and Acronyms. Crown Copyright. 2013.
Daluz HM. The Nature of Latent Prints. In: Fundamentals of Fingerprint Analysis. 2nd ed. CRC Press; 2018. p. 83–93.
Lennard C. Fingerprint detection: current capabilities. Australian Journal of Forensic Sciences. 2007 Dec;39(2):55–71.
Peixoto AS, Ramos AS. Filmes finos & Revelação de ımpressões digitais latentes. Tecnologia dos Materiais . 2010;22(29).
Daluz HM. Palm Print Comparisons. In: Fundamentals of Fingerprint Analysis. 2nd ed. 2019.
Dar H, Carney FE, Winter ST. Dermatoglyphics and The Sımıan Crease ın Infants of Low Birth Weight. Acta Paediatr. 1971 Jul 21;60(4):479–81.
Maceo A, Carter M, Stromback B. Palm Prints. In: Encyclopedia of Forensic Sciences. Elsevier; 2013. p. 29–36.
Alter M. Variation in Palmar Creases. Arch Pediatr Adolesc Med. 1970 Nov 1;120(5):424.
Afework M. Prevalence of the Different Types of Palmar Creases Among Medical and Dental Students in Addis Ababa, Ethiopia. Ethiop J Health Sci. 2019 Jan 1;29(3):391–400.
Johnson BT, Riemen JAJM. Digital capture of fingerprints in a disaster victim identification setting: a review and case study. Forensic Sci Res. 2019 Oct 2;4(4):293–302.
Daluz HM. Known Fingerprints. In: Fundamentals of Fingerprint Analysis. 2nd ed. CRC Press; 2019. p. 76–9.
DiMaio V, DiMaio D. Forensic Pathology. 2nd ed. Boca Raton, FL: Taylor & Francis; 2001.
Chen C, Yang C, Chen C, et al., Comparison of Rehydration Techniques for Fingerprinting the Deceased after Mummification. J Forensic Sci. 2017 Jan 10;62(1):205–8.
INTERPOL. https://www.interpol.int/How-we-work/Forensics/Disaster-Victim-Identification-DVI. 2021. Diseaster Victim Identification (DVI).
Cutro B. Recording living and postmortem friction ridge exemplars. In: The Fingerprint Sourcebook. Washington, DC: National Institute of Justice, U.S. Department of Justice, Office of Justice Programs; 2011.
Ünlütürk O, Afşin H. Ölüm Olgularında Kimlik Tespiti. Turkiye Klinikleri Forensic Medicine-Special Topics. 2016;2(1):24–34.
FBI (Federal Bureau of Investigation USD of J. The Science of Fingerprints. US Government Printing Office. 1979.
Cattaneo C, De Angalis D, Porta D, et al., Personal identification of cadavers and human remains. In: Schmitt A, Cunha E, Pinheiro J, editors. Forensic Anthropology and Medicine: Complementary Sciences from Recovery to Cause of Death. 1st ed. Totowa, NJ: Humana Press Inc; 2006. p. 359–79.
Boudreault A, Beaudoin A. Pseudo-Operational Study on the Efficiency of Various Fingermark Development Techniques During the Aging Process. J Forensic Identif. 2017;67(1).
Boseley RE, Vongsvivut J, Appadoo D, et al., Monitoring the chemical changes in fingermark residue over time using synchrotron infrared spectroscopy. Analyst. 2022;147(5):799–810.
Yang JH, Yoh JJ. Reconstruction of chemical fingerprints from an individual’s time-delayed, overlapped fingerprints via laser-induced breakdown spectrometry (LIBS) and Raman spectroscopy. Microchemical Journal. 2018 Jun;139:386–93.
Pleik S, Spengler B, Schäfer T, et al., Fatty Acid Structure and Degradation Analysis in Fingerprint Residues. J Am Soc Mass Spectrom. 2016 Sep 1;27(9):1565–74.
Johnston A, Rogers K. A study of the intermolecular interactions of lipid components from analogue fingerprint residues. Science & Justice. 2018 Mar;58(2):121–7.
Popov KT, Sears VG, Jones BJ. Migration of latent fingermarks on non-porous surfaces: Observation technique and nanoscale variations. Forensic Sci Int. 2017 Jun;275:44–56.
De Alcaraz‐Fossoul J, Einfalt MR, Dean ER, et al., Chavez A, Roberts KA. Repeatability and reproducibility of the color contrast technique for fingermark age estimation applications. J Forensic Sci. 2021 May 22;66(3):1075–84.
Chen H, Shi M, Ma R, et al., Advances in fingermark age determination techniques. Analyst. 2021;146(1):33–47.
van Dam A, Schwarz JC V., de Vos J, et al., Oxidation Monitoring by Fluorescence Spectroscopy Reveals the Age of Fingermarks. Angewandte Chemie International Edition. 2014 Jun 10;53(24):6272–5.
Merkel R, Gruhn S, Dittmann J, et al., On non-invasive 2D and 3D Chromatic White Light image sensors for age determination of latent fingerprints. Forensic Sci Int. 2012 Oct;222(1–3):52–70.
Hinners P, Thomas M, Lee YJ. Determining Fingerprint Age with Mass Spectrometry Imaging via Ozonolysis of Triacylglycerols. Anal Chem. 2020 Feb 18;92(4):3125–32.
Girod A, Spyratou A, Holmes D, et al., Aging of target lipid parameters in fingermark residue using GC/MS: Effects of influence factors and perspectives for dating purposes. Science & Justice. 2016 May;56(3):165–80.