Türkiye ve Brıcs Ülkelerinde Sistemik Risk ve Oynaklık Yayılımı

Özet

Bu bölüm, Türkiye ile BRICS+ ülkelerinin hisse senedi piyasaları arasındaki sistemik risk ve oynaklık yayılım dinamiklerini incelemektedir. Küresel finansal krizler, COVID-19 pandemisi, Rusya-Ukrayna savaşı ve jeopolitik belirsizliklerin yoğunlaştığı 2018–2025 dönemi ele alınarak, finansal piyasalar arasındaki zamanla değişen etkileşimler analiz edilmiştir. Çalışmada, Türkiye ile BRICS+ ülkelerini temsilen seçilen hisse senedi endekslerinin günlük log-getiri serileri kullanılmış ve zamanla değişen parametreli VAR (TVP-VAR) yöntemi uygulanmıştır. Bulgular, piyasalar arasında orta düzeyde bir toplam bağlantılılık bulunduğunu ve kriz dönemlerinde oynaklık bulaşmasının belirgin biçimde arttığını göstermektedir. Güney Afrika ve Brezilya piyasaları net oynaklık yayıcı konumunda öne çıkarken, Türkiye, Çin ve Mısır piyasaları daha çok oynaklık alıcısı olarak belirlenmiştir. Sonuçlar, gelişmekte olan ekonomilerde finansal entegrasyonun dönemsel olarak güçlendiğini ve küresel şokların sistemik risk aktarımını hızlandırdığını ortaya koymaktadır. Bu yönüyle bölüm, politika yapıcılar ve yatırımcılar için rejime duyarlı risk yönetimi açısından önemli çıkarımlar sunmaktadır.

This chapter examines systemic risk and volatility spillover dynamics between Türkiye and BRICS+ equity markets. Focusing on the 2018–2025 period—characterized by major global shocks such as the COVID-19 pandemic, the Russia-Ukraine war, and heightened geopolitical uncertainty—the study analyzes time-varying financial interconnectedness across markets. Daily logarithmic returns of selected stock market indices representing Türkiye and BRICS+ countries are employed, and the analysis is conducted using the Time-Varying Parameter Vector Autoregressive (TVP-VAR) framework. The findings reveal a moderate level of overall connectedness among markets, with volatility spillovers intensifying significantly during crisis periods. South Africa and Brazil emerge as net volatility transmitters, while Türkiye, China, and Egypt are identified as net receivers of external shocks. The results highlight that financial integration among emerging markets is not constant but strengthens during periods of global stress, amplifying systemic risk transmission. Overall, the chapter provides valuable insights for policymakers and investors by emphasizing the importance of time-varying and regime-sensitive approaches to financial risk management in emerging and interconnected markets.

Referanslar

Abdenur, A. E., & Folly, M. (2015). The new development bank and the institutionalization of the BRICS. BRICS-Studies and Documents, 77-111.

Antonakakis, N., & Gabauer, D. (2017). Refined measures of dynamic connectedness based on TVP-VAR. Working Paper. https://doi.org/10.2139/ssrn.2992050

Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management, 13(4), 84. https://doi.org/10.3390/jrfm13040084.

Assaf, A., Klotzle, M. C., Palazzi, R. B. ve Demir, E. (2025). Connectedness across environmental, social, and governance (ESG) indices: evidence from emerging markets. Research in International Business and Finance, 73, 102596. https://doi.org/10.1016/j.ribaf.2024.102596

Bagchi, A. K. (2016). Volatility spillovers between crude oil price and stock markets: Evidence from BRIC countries. Energy Economics, 58, 255–265. https://doi.org/10.1016/j.eneco.2016.07.008

Bahar, B., Altemur, N., Özen, Ü., Başaran, M. (2025). The Effect of COVID-19 Shocks on the Return and Volatility Structures of BIST Technology Companies: An Examination with the TVP-VAR Model. Malatya Turgut Özal Üniversitesi İşletme ve Yönetim Bilimleri Dergisi, 6(2), 270-285.

Baruník, J., & Křehlík, T. (2018). Measuring the frequency dynamics of financial connectedness and systemic risk. Journal of Financial Econometrics, Volume 16, Issue 2, Spring 2018, Pages 271–296, https://doi.org/10.1093/jjfinec/nby001

Balcilar, M., & Usman, O. (2021). Exchange rate and oil price pass-through in the BRICS countries: Evidence from the spillover index and rolling-sample analysis. Energy, 229, 120666. https://doi.org/10.1016/j.energy.2021.120666

Bhar, R., & Nikolova, B. (2009). Return, volatility spillovers and dynamic correlation in the BRIC equity markets: An analysis using a bivariate EGARCH framework. Global Finance Journal, 19(3), 203–218. https://doi.org/10.1016/j.gfj.2008.09.002

BRICS. (2025). About the BRICS. https://brics.br/en/about-the-brics

Carnegie Endowment for International Peace. (2025). BRICS expansion and global demographic dynamics. Washington, DC: Carnegie Endowment for International Peace.

Chang, T., Gupta, R., Hsieh, M. H., & Ma, S. (2023). Return and volatility connectedness among the BRICS stock and oil markets. Economic Systems, 47(3), 101078. https://doi.org/10.1016/j.ecosys.2023.101078

Chen, Y., Yao, Y., & Zhu, Y. (2022). The dynamic relationship between gold and BRICS stock markets: Evidence from asymmetric GARCH models. Resources Policy, 78, 102857. https://doi.org/10.1016/j.resourpol.2022.102857

Cooper, A. F. (2016). The BRICS: A Very Short Introduction (Kap. “A contested invention”). Oxford University Press.

Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057–1072. https://doi.org/10.2307/1912517

Diebold, F. X., & Yılmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57–66. https://doi.org/10.1016/j.ijforecast.2011.02.006

Diebold, F. X., & Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119–134. https://doi.org/10.1016/j.jeconom.2014.04.

Diebold, F.X., Yılmaz, K., 2009. Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, Volume 119, Issue 534, 1 January 2009, Pages 158–171, https://doi.org/10.1111/j.1468-0297.2008.02208.x

Dsouza, S., Singh, N. P., & Oliyide, J. A. (2024). Dynamic connectedness among the BRICS markets and the recent pandemic: An application of TVP-VAR approach. International Journal of Emerging Markets. https://doi.org/10.1108/IJOEM-11-2022-1673

Engle, R. F. (2002). Dynamic conditional correlation: A simple class of multivariate GARCH models. Journal of Business & Economic Statistics, 20(3), 339–350. https://doi.org/10.1198/073500102288618487

Feng, Z., Liu, X., & Yao, Y. (2023). Impact of geopolitical risk on the volatility spillovers among G7 and BRICS stock markets. Procedia Computer Science, 221, 878–884. https://doi.org/10.1016/j.procs.2023.08.064

Feng, Z., Liu, X., & Yao, Y. (2023). Impact of geopolitical risk on the volatility spillovers among G7 and BRICS stock markets. Procedia Computer Science, 221, 878–884. https://doi.org/10.1016/j.procs.2023.08.064

Joo, S. J., Kang, S. H., & Yoon, S. M. (2023). Symmetric and asymmetric volatility spillover among BRICS stock markets. Emerging Markets Finance and Trade, 59(1), 103–119. https://doi.org/10.1080/1540496X.2022.2057954

Malik, K., Sharma, S., & Kaur, M. (2021). Measuring contagion during COVID-19 through volatility spillovers of BRIC countries using diagonal BEKK approach. Journal of Economic Studies, 49(2), 227–242. https://doi.org/10.1108/JES-05-2020-0246

Öniş, Z., & Kutlay, M. (2020). The New Age of Hybridity and Clash of Norms: China, BRICS, and Challenges of Global Governance in a Postliberal International Order. Alternatives: Global, Local, Political, 45(3), 123–142. https://doi.org/10.1177/0304375420921086

Panda, P., Vasudevan, S., & Panda, B. (2020). Dynamic connectedness among BRICS and major countries stock markets. Journal of Public Affairs, 21(1), e2265. https://doi.org/10.1002/pa.2265

Pandey, V., & Vipul. (2018). Volatility spillover from crude oil and gold to BRICS equity markets. Journal of Economic Studies, 45(2), 426–440. https://doi.org/10.1108/JES-01-2017-0025

Radulescu, I. G., Panait, M., & Voica, C. (2014). BRICS countries challenge to the world economy new trends. Procedia Economics and Finance, 8, 605–613. https://doi.org/10.1016/S2212-5671(14)00132-0

Stuenkel, O. (2015). The BRICS and the future of global order. Lanham, MD: Lexington Books.

Syriopoulos, T., Makram, B., & Boubaker, A. (2015). Stock market volatility spillovers and portfolio hedging: BRICS and the financial crisis. International Review of Financial Analysis, 39, 7–18. https://doi.org/10.1016/j.irfa.2015.01.007

World Bank. (2023). World development report 2023: Migrants, refugees, and societies. Washington, DC: World Bank. https://www.worldbank.org/en/publication/wdr2023

World Economic Forum. (2024). The global risks report 2024. Geneva: World Economic Forum. https://www.weforum.org/reports/global-risks-report-2024

Zhang, P., Sha, Y., & Xu, Y. (2021). Stock market volatility spillovers in G7 and BRIC. Emerging Markets Finance and Trade, 57(7), 2107–2119. https://doi.org/10.1080/1540496X.2021.1908256

Zivot, E., & Andrews, D. W. K. (1992). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics, 10(3), 251–270. https://doi.org/10.1080/07350015.1992.10509904

Yayınlanan

13 Şubat 2026

Lisans

Lisans