Moleküler Spektroskopiye ve Sensör Bilimine Giriş
Özet
Referanslar
Akash, M. S. H., & Rehman, K. (2019). Ultraviolet-visible (UV-VIS) spectroscopy. In Essentials of pharmaceutical analysis (pp. 29-56). Springer.
Albani, J. R. (2008). Principles and applications of fluorescence spectroscopy. John Wiley & Sons.
Albert, S., Albert, K. K., Hollenstein, H., Tanner, C. M., & Quack, M. (2011). Fundamentals of rotation-vibration spectra. Handbook of High-resolution Spectroscopy.
Atkins, P. W., De Paula, J., & Keeler, J. (2023). Atkins' physical chemistry. Oxford university press.
Atkins, P. W., & Friedman, R. S. (2011). Molecular quantum mechanics. Oxford university press.
Aydın, R., & Şahin, B. (2017). Farklı oranlarda tiyoüre katkısının nanoyapılı Kadmiyum oksit (CdO) filmlerin fiziksel özellikleri üzerine etkisinin incelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(3), 974-979.
Baldus, M. (2006). Molecular interactions investigated by multi-dimensional solid-state NMR. Current opinion in structural biology, 16(5), 618-623.
Banwell, C. N., & McCash, E. M. (2017). Fundamentals of molecular spectroscopy. Indian Edition.
Barbillat, J., Bougeard, D., Buntinx, G., Delhaye, M., Dhamelincourt, P., & Fillaux, F. (1999). Spectrométrie raman. Techniques de l'ingénieur. Analyse et caractérisation, 4(P2865), P2865. 2861-P2865. 2831.
Bennet, M. A. (2011). Multi-parameter quantitative mapping of microfluidic devices University of Edinburgh].
Bernath, P. F. (2025). Spectra of atoms and molecules. Oxford university press.
Beynon, J. H. (1960). Mass spectrometry and its applications to organic chemistry.
Biémont, E. (2025). A History of Spectroscopy. CRC Press.
Bloch, F. (1946). Nuclear induction. Physical review, 70(7-8), 460.
Bohr, N. (2025). On the constitution of atoms and molecules. Good Press.
Bohren, C. F., & Huffman, D. R. (2008). Absorption and scattering of light by small particles. John Wiley & Sons.
Bokobza, L. (2017). Spectroscopic techniques for the characterization of polymer nanocomposites: a review. Polymers, 10(1), 7.
Chandra, A., Kumar, V., Garnaik, U. C., Dada, R., Qamar, I., Goel, V. K., & Agarwal, S. (2024). Unveiling the Molecular Secrets: A Comprehensive Review of Raman Spectroscopy in Biological Research. ACS omega, 9(51), 50049-50063. https://doi.org/10.1021/acsomega.4c00591
Clark, R., & Long, D. (1977). Raman spectroscopy. McGraw-Hill, New York.
Coblentz, W. W. (1908). Investigations of Infra-red Spectra (Vol. 35). Carnegie institution of Washington.
del Valle, J. C., Turek, A. M., Tarkalanov, N. D., & Saltiel, J. (2002). Distortion of the Fluorescence Spectrum of Anthracene with Increasing Laser Pulse Excitation Energy. The Journal of Physical Chemistry A, 106(20), 5101-5104. https://doi.org/10.1021/jp014688t
Diercks, T., Coles, M., & Kessler, H. (2001). Applications of NMR in drug discovery. Current Opinion in Chemical Biology, 5(3), 285-291.
Dyar, M. D., Agresti, D. G., Schaefer, M. W., Grant, C. A., & Sklute, E. C. (2006). Mössbauer spectroscopy of earth and planetary materials. Annu. Rev. Earth Planet. Sci., 34(1), 83-125.
Ebrahimi, F., Kumari, A., & Dellinger, K. (2025). Integration of nanoengineering with artificial intelligence and machine learning in surface‐enhanced Raman spectroscopy (SERS) for the development of advanced biosensing platforms. Advanced Sensor Research, 4(2), 2400155.
Einstein, A. (2005). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)]. Annalen der Physik, 517, 164-181.
Faggio, G., Grillo, R., & Messina, G. (2021). Raman and Micro‐Raman Spectroscopy. Spectroscopy for Materials Characterization, 169-200.
Fan, T. W.-M., & Lane, A. N. (2016). Applications of NMR spectroscopy to systems biochemistry. Progress in Nuclear Magnetic Resonance Spectroscopy, 92, 18-53.
Ferraro, J. R. (2003). Introductory raman spectroscopy. Elsevier.
Fusè, M., Mazzeo, G., Bloino, J., Longhi, G., & Abbate, S. (2024). Pushing measurements and interpretation of VCD spectra in the IR, NIR and visible ranges to the detectability and computational complexity limits. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 305, 123496. https://doi.org/https://doi.org/10.1016/j.saa.2023.123496
Ghosh, S., & Nandi, S. (2024). A Comprehensive Review on UV-Visible Spectroscopy and Its application. Int. J. All Res. Education Sci. Methods, 12, 1501-1507.
Gomes, A. J., Lunardi, C. N., Rocha, F. S., & Patience, G. S. (2019). Experimental methods in chemical engineering: Fluorescence emission spectroscopy. The Canadian Journal of Chemical Engineering, 97(8), 2168-2175.
Griffiths, D. J. (2023). Introduction to electrodynamics. Cambridge University Press.
Griffiths, P., & De Haseth, J. (2007). Fourier Transform Infrared Spectrometry John Wiley & Sons. Inc., Hoboken, New Jersey.
Guide, H. C. e. E. (2025). The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics. In. Eurachem Guide: Eurachem. (Reprinted from: 3rd).
Gupta, P., Das, S., & Singh, N. (2023). Nuclear magnetic resonance spectroscopy. In Spectroscopy (pp. 23-92). Jenny Stanford Publishing.
Gür, B. (2015). Merosiyanin 540 Dye Bileşiğinin İnce Filmlerinin Hazırlanması ve Fotofiziksel Özelliklerinin İncelenmesi [Doctoral, Atatürk University]. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=GCNGZjlgSPIKvj3gaQOiPw&no=lMMAgMwePIMd64rN6RFhkg
Harmony, M. D. (1999). Microwave Spectrometers*. In J. C. Lindon (Ed.), Encyclopedia of Spectroscopy and Spectrometry (Second Edition) (pp. 1537-1543). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-374413-5.00204-9
Harris, D. C., & Lucy, C. (2015). Quantitative Chemical Analysis. W. H. Freeman. https://books.google.com.tr/books?id=cKLACQAAQBAJ
Herzberg, G. (1945). Molecular spectra and molecular structure: Infrared and raman spectra of polyatomic molecules (Vol. 2). van Nostrand.
Hollas, J. M. (2004). Modern spectroscopy. John Wiley & Sons.
Ibrayev, N., Seliverstova, E., Valiev, R., Aymagambetova, A., & Sundholm, D. (2024). The effect of heavy atoms on the deactivation of electronic excited states of dye molecules near the surface of metal nanoparticles. Physical Chemistry Chemical Physics, 26(40), 25986-25993.
Ingram, D. J. E. (1955). Microwave Spectroscopes. In D. J. E. Ingram (Ed.), Spectroscopy at Radio and Microwave Frequencies (pp. 70-107). Springer US. https://doi.org/10.1007/978-1-4684-0733-4_4
Jaffé, H. H., & Miller, A. L. (1966). The fates of electronic excitation energy. Journal of chemical education, 43(9), 469.
Jameson, C. J. (1981). Effects of intermolecular interactions and intramolecular dynamics on nuclear resonance. Bull. Magn. Reson, 3, 3-29.
Kasha, M. (1950). Characterization of electronic transitions in complex molecules. Discussions of the Faraday society, 9, 14-19.
Kim, H. H. (2015). Endoscopic Raman spectroscopy for molecular fingerprinting of gastric cancer: principle to implementation. BioMed Research International, 2015(1), 670121.
Kirchberg, H., & Thorwart, M. (2020). Time-Resolved Probing of the Nonequilibrium Structural Solvation Dynamics by the Time-Dependent Stokes Shift. Journal of Physical Chemistry B, 124(27), 5717-5722. https://doi.org/10.1021/acs.jpcb.0c03990
Kirchhoff, G., & Bunsen, R. (1895). Chemische analyse durch spectralbeobachtungen. Engelmann.
Kumsar, F. (2015). İki̇ ve Çok Atomlu Molekülleri̇n Dönme-Ti̇treşi̇m Enerji̇leri̇ni̇n Yaklaşim Yöntemleri̇yle İncelenmesi̇ Hitit University (Turkey)].
Lakowicz, J. R. (1999). Introduction to fluorescence. In Principles of fluorescence spectroscopy (pp. 1-23). Springer.
Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy. Springer.
Le Ru, E., & Etchegoin, P. (2008). Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. Elsevier.
Levitt, M. H. (2008). Spin dynamics: basics of nuclear magnetic resonance. John Wiley & Sons.
Long, D. A. (2002). The raman effect. (No Title).
Long, D. A. (2002). The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. John Wiley & Sons, Ltd. https://onlinelibrary.wiley.com/doi/book/10.1002/0470845767
Lopes, C. d. C. A., Limirio, P. H. J. O., Novais, V. R., & Dechichi, P. (2018). Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Applied Spectroscopy Reviews, 53(9), 747-769.
Maafi, M. (2025). Photokinetics: A New Perspective. Springer Nature Switzerland. https://books.google.com.tr/books?id=BDGKEQAAQBAJ
Maiman, T. H. (1960). Stimulated optical radiation in ruby. nature, 187(4736), 493-494.
Manggala, B., Chaichana, C., Syahputra, W., & Wongwilai, W. (2023). Pesticide residues detection in agricultural products: A review. Natural and Life Sciences Communications, 22(3), e2023049.
Mao, J., Aladin, V., Jin, X., Leeder, A. J., Brown, L. J., Brown, R. C. D., He, X., Corzilius, B., & Glaubitz, C. (2019). Exploring Protein Structures by DNP-Enhanced Methyl Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 141(50), 19888-19901. https://doi.org/10.1021/jacs.9b11195
McCall, W., Christy, T. M., Pipp, D. A., Jaster, B., White, J., Goodrich, J., Fontana, J., & Doxtader, S. (2018). Evaluation and application of the optical image profiler (OIP) a direct push probe for photo-logging UV-induced fluorescence of petroleum hydrocarbons. Environmental Earth Sciences, 77(10), 374.
McQuarrie, D. A., & Simon, J. D. (1997). Physical chemistry: a molecular approach (Vol. 1). University science books Sausalito, CA.
Moerner, W., & Fromm, D. P. (2003). Methods of single-molecule fluorescence spectroscopy and microscopy. Review of Scientific instruments, 74(8), 3597-3619.
Moskovits, M. (1985). Surface-enhanced spectroscopy. Reviews of modern physics, 57(3), 783.
Noomnarm, U., & Clegg, R. M. (2009). Fluorescence lifetimes: fundamentals and interpretations. Photosynthesis research, 101(2), 181-194.
Ojeda, J. J., & Dittrich, M. (2012). Fourier transform infrared spectroscopy for molecular analysis of microbial cells. In Microbial systems biology: methods and protocols (pp. 187-211). Springer.
Orlando, A., Franceschini, F., Muscas, C., Pidkova, S., Bartoli, M., Rovere, M., & Tagliaferro, A. (2021). A comprehensive review on Raman spectroscopy applications. Chemosensors, 9(9), 262.
Patel, G., & Chudasama, D. (2021). Nuclear magnetic resonance spectroscopy NMR. Nucl. Eng. Technol, 11, 30-34.
Planck, M. (1900). Entropie und temperatur strahlender wärme. Annalen der Physik, 306(4), 719-737.
Priestley, E., & Haug, A. (1968). Phosphorescence spectrum of pure crystalline naphthalene. The Journal of Chemical Physics, 49(2), 622-629.
Purcell, E. M., Torrey, H. C., & Pound, R. V. (1946). Resonance absorption by nuclear magnetic moments in a solid. Physical review, 69(1-2), 37.
Rabi, I. I., Zacharias, J. R., Millman, S., & Kusch, P. (1938). A new method of measuring nuclear magnetic moment. Physical review, 53(4), 318.
Raman, C. V. (1928). A change of wave-length in light scattering. Nature, 121(3051), 619-619.
Sakurai, J. J., & Napolitano, J. (2020). Modern quantum mechanics. Cambridge University Press.
Sasic, S., & Ozaki, Y. (2011). Raman, infrared, and near-infrared chemical imaging. John Wiley & Sons.
Schoonheydt, R. A. (1982). Ultraviolet and visible light spectroscopy. Developments in sedimentology, 34, 163-189.
Shi, H. X., Bao, H. W., & Wu, G. Y. (2024). Solvation controlled excited-state dynamics in a donor-acceptor phenazine-imidazole derivative. Rsc Advances, 14(24), 17071-17076. https://doi.org/10.1039/d4ra02417f
Shizu, K., & Kaji, H. (2024). Quantitative prediction of rate constants and its application to organic emitters. Nat Commun, 15(1), 4723. https://doi.org/10.1038/s41467-024-49069-4
Singhal, A., Saini, U., Chopra, B., Dhingra, A. K., Jain, A., & Chaudhary, J. (2024). Uv-visible spectroscopy: a review on its pharmaceutical and bio-allied sciences applications. Current Pharmaceutical Analysis, 20(3), 161-177.
Sjöback, R., Nygren, J., & Kubista, M. (1995). Absorption and fluorescence properties of fluorescein. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 51(6), L7-L21.
Skoog, D. A., Holler, F. J., & Crouch, S. R. (1998). Principles of instrumental analysis (Vol. 203). Saunders college publishing Philadelphia.
Slichter, C. P. (2013). Principles of magnetic resonance (Vol. 1). Springer Science & Business Media.
Smith, E., & Dent, G. (2019). Modern Raman spectroscopy: a practical approach. John Wiley & Sons.
Sommerfeld, A. (1916). Zur quantentheorie der spektrallinien. Annalen der Physik, 356(17), 1-94.
Standardization, I.-I. O. f. (2021). Capability of detection — Part 8: Guidance for the implementation of the ISO 11843 series. In: ISO - International Organization for Standardization.
Sudharshan, N., & Swetha, V. (2023). UV-visible spectroscopy: a comprehensive review on instrumentation. World Journal of Pharmaceutical Research, 12(19), 1342-1363.
Tang, Y., & Tang, B. Z. (2022). Handbook of Aggregation-Induced Emission, Volume 1: Tutorial Lectures and Mechanism Studies. Wiley. https://books.google.com.tr/books?id=18l6EAAAQBAJ
Turro, N. J., Ramamurthy, V., & Scaiano, J. C. (2010). Modern molecular photochemistry of organic molecules (Vol. 188). University Science Books Sausalito, CA.
Valeur, B., & Berberan-Santos, M. (2012). Molecular Fluorescence: Principles and Applications 2nd edn (Weinhein Wiley. In: VCH Verlag GmbH & Co, KGaA.
Valeur, B., & Berberan-Santos, M. N. (2001). Molecular Fluorescence: Principles and Applications.
van der Schans, M. (2014). Characterization of a Dielectric Barrier Discharge with a Square Mesh Electrode Eindhoven University of Technology, Department of Applied Physics Eindhoven …].
Vessman, J., RALUCA I. STEFAN, JACOBUSF VAN STADEN, KLAUS DANZER, WOLFGANG LINDNER, DUNCAN THORBURN BURNS, ALES FAJGELJ, & MÜLLER, H. (2001). Selectivity in analytical chemistry (IUPAC Recommendations 2001). In (pp. 7). INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY.
von Fraunhofer, J. (1814). Bestimmung des Brechungs-und Farbenzerstreutuungs-Vermögens verschiedener Glassarten. Bezug auf die Vervollkommung achromatischer Fernröhre, Denkschriften der Königlichen Akademie der Wissenschaften zu München, 1814, 15.
Wang, F. (2023). Future of computational molecular spectroscopy—from supporting interpretation to leading the innovation. Physical Chemistry Chemical Physics, 25(10), 7090-7105.
Wollaston, W. H. (1802). XII. A method of examining refractive and dispersive powers, by prismatic reflection. Philosophical transactions of the Royal Society of London(92), 365-380.
Zacharioudaki, D.-E., Fitilis, I., & Kotti, M. (2022). Review of fluorescence spectroscopy in environmental quality applications. Molecules, 27(15), 4801.
Zeeman, P. (1897). XXXII. On the influence of magnetism on the nature of the light emitted by a substance. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 43(262), 226-239.
Zhang, S., Qi, Y., Tan, S. P. H., Bi, R., & Olivo, M. (2023). Molecular Fingerprint Detection Using Raman and Infrared Spectroscopy Technologies for Cancer Detection: A Progress Review. Biosensors (Basel), 13(5). https://doi.org/10.3390/bios13050557