Egzersiz ve Uydu Hücre Aktivasyonu

Özet

Uydu hücreleri, iskelet kası liflerinin sarkolemması ile bazal laminası arasında yer alan ve kasın büyüme, onarım ve rejenerasyon süreçlerinde temel rol oynayan kas kökenli öncü hücrelerdir. Normal koşullarda inaktif durumda bulunan bu hücreler, kas hasarı veya egzersiz gibi fizyolojik uyaranlar sonucunda aktive olarak proliferasyon ve diferansiyasyon süreçlerine katılır. Bu kitap bölümünde, uydu hücrelerinin keşfi, yapısal özellikleri ve egzersize bağlı kas adaptasyonlarındaki rolleri güncel literatür ışığında ele alınmıştır. Direnç ve eksantrik egzersizlerin, mekanik yüklenme ve kas hasarı yoluyla özellikle tip II kas liflerinde uydu hücre aktivitesini artırdığı; dayanıklılık ve kombine antrenmanların ise daha çok tip I liflerde uydu hücre havuzunu genişlettiği belirtilmiştir. Ayrıca androjenler, östrojen, büyüme faktörleri ve yaşlanma gibi faktörlerin uydu hücre fonksiyonu üzerindeki düzenleyici etkileri tartışılmıştır. Sonuç olarak, uydu hücreleri yalnızca kas hasarına yanıt veren hücreler değil, aynı zamanda egzersize bağlı kas hipertrofisi, adaptasyon ve yaşlanmaya karşı kas bütünlüğünün korunmasında kritik öneme sahip biyolojik yapılardır.

Referanslar

Scharner, J., & Zammit, P. S. (2011). The muscle satellite cell at 50: the formative years. Skeletal muscle, 1(1), 28.

Hyldahl, R., Olson, T., Welling, T., Groscost, L., & Parcell, A. (2014). Satellite cell activity is differentially affected by contraction mode in human muscle following a work-matched bout of exercise. Frontiers in Physiology, 5. https://doi.org/10.3389/fphys.2014.00485.

Kurosaka, M., Kurosaka, M., Naito, H., Ogura, Y., Ogura, Y., Machida, S., & Katamoto, S. (2012). Satellite cell pool enhancement in rat plantaris muscle by endurance training depends on intensity rather than duration. Acta Physiologica, 205. https://doi.org/10.1111/j.1748-1716.2011.02381.x.

Pugh, J., Faulkner, S., Turner, M., & Nimmo, M. (2017). Satellite cell response to concurrent resistance exercise and high-intensity interval training in sedentary, overweight/obese, middle-aged individuals. European Journal of Applied Physiology, 118, 225 - 238. https://doi.org/10.1007/s00421-017-3721-y.

Masschelein, E., D’Hulst, G., Zvick, J., Hinte, L., Soro-Arnaiz, I., Gorski, T., Von Meyenn, F., Bar‐Nur, O., & De Bock, K. (2020). Exercise promotes satellite cell contribution to myofibers in a load-dependent manner. Skeletal Muscle, 10. https://doi.org/10.1186/s13395-020-00237-2.

Crameri, R., Langberg, H., Magnusson, P., Jensen, C., Schrøder, H., Olesen, J., Suetta, C., Teisner, B., & Kjaer, M. (2004). Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. The Journal of Physiology, 558. https://doi.org/10.1113/jphysiol.2004.061846.

Wehrstein, M., Schöffel, A., Weiberg, N., Gwechenberger, T., Betz, T., Rittweg, M., Parstorfer, M., Pilz, M., & Friedmann-Bette, B. (2021). Eccentric Overload during Resistance Exercise: A Stimulus for Enhanced Satellite Cell Activation. Medicine & Science in Sports & Exercise, 54, 388 - 398. https://doi.org/10.1249/MSS.0000000000002818.

Shefer, G., Rauner, G., Stuelsatz, P., Benayahu, D., & Yablonka-Reuveni, Z. (2013). Moderate‐intensity treadmill running promotes expansion of the satellite cell pool in young and old mice. The FEBS Journal, 280. https://doi.org/10.1111/febs.12228.

Cisterna, B., Giagnacovo, M., Costanzo, M., Fattoretti, P., Zancanaro, C., Pellicciari, C., & Malatesta, M. (2016). Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice. Journal of Anatomy, 228. https://doi.org/10.1111/joa.12429.

Shefer, G., Rauner, G., Yablonka-Reuveni, Z., & Benayahu, D. (2010). Reduced Satellite Cell Numbers and Myogenic Capacity in Aging Can Be Alleviated by Endurance Exercise. PLoS ONE, 5. https://doi.org/10.1371/journal.pone.0013307.

Pugh, J., Faulkner, S., Turner, M., & Nimmo, M. (2017). Satellite cell response to concurrent resistance exercise and high-intensity interval training in sedentary, overweight/obese, middle-aged individuals. European Journal of Applied Physiology, 118, 225 - 238. https://doi.org/10.1007/s00421-017-3721-y.

Rostami, S., Salehizadeh, R., Shamloo, S., & Fayazmilani, R. (2022). The Effect of Voluntary Physical Activity in an Enriched Environment and Combined Exercise Training on the Satellite Cell Pool in Developing Rats. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.899234.

Cisterna, B., Giagnacovo, M., Costanzo, M., Fattoretti, P., Zancanaro, C., Pellicciari, C., & Malatesta, M. (2016). Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice. Journal of Anatomy, 228. https://doi.org/10.1111/joa.12429.

Clark, W.E., & Blomfield, L.B. (1945). The efficiency of intramuscular anastomoses, with observations on the regeneration of devascularized muscle. J Anat 79: 15-32.4

Lewis, W.H., & Lewis, M.R. (1917). Behavior of cross striated muscle in tissue cultures. Am J Anat 22: 169-194,

Mauro, A. (1961). Satellite cell of skeletal muscle fibers. The Journal of biophysical and biochemical cytology, 9(2), 493.

Ishikawa, H. (1965). The fine structure of myo-tendon junction in some mammalian skeletal muscles. Archivum histologicum japonicum, 25(3), 275-296.

Sabourin, L. A., & Rudnicki, M. A. (2000). The molecular regulation of myogenesis. Clinical genetics, 57(1), 16-25.

Bischoff, R. (1994). The satellite cell and muscle regeneration. Myology: basic and clinical.

Morgan, J. E., & Partridge, T. A. (2003). Muscle satellite cells. The international journal of biochemistry & cell biology, 35(8), 1151-1156.

Murach, K., Fry, C., Kirby, T., Jackson, J., Lee, J., White, S., Dupont-Versteegden, E., McCarthy, J., & Peterson, C. (2018). Starring or Supporting Role? Satellite Cells and Skeletal Muscle Fiber Size Regulation.. Physiology, 33 1, 26-38 . https://doi.org/10.1152/physiol.00019.2017.

Murach, K., Fry, C., Dupont-Versteegden, E., McCarthy, J., & Peterson, C. (2021). Fusion and beyond: Satellite cell contributions to loading‐induced skeletal muscle adaptation. The FASEB Journal, 35. https://doi.org/10.1096/fj.202101096R.Formun Üstü

Kaczmarek, A., Kaczmarek, M., Ciałowicz, M., Clemente, F., Wolański, P., Badicu, G., & Murawska-Ciałowicz, E. (2021). The Role of Satellite Cells in Skeletal Muscle Regeneration—The Effect of Exercise and Age. Biology, 10. https://doi.org/10.3390/biology10101056.

Snijders, T., Nederveen, J., McKay, B., Joanisse, S., Verdijk, L., Van Loon, L., & Parise, G. (2015). Satellite cells in human skeletal muscle plasticity. Frontiers in Physiology, 6. https://doi.org/10.3389/fphys.2015.00283.

Kraemer, W., Ratamess, N., Hymer, W., Nindl, B., & Fragala, M. (2020). Growth Hormone(s), Testosterone, Insulin-Like Growth Factors, and Cortisol: Roles and Integration for Cellular Development and Growth With Exercise. Frontiers in Endocrinology, 11. https://doi.org/10.3389/fendo.2020.00033.

Kadi F, Eriksson A, Holmner S & Thornell LE 1999 Effects of anabolic steroids on the muscle cells of strength-trained athletes. Medicine and Science in Sports and Exercise 31 1528–1534.

Allen DL, Roy RR & Edgerton VR 1999 Myonuclear domains in muscle adaptation and disease. Muscle and Nerve 22 1350–1360.

Sinha-Hikim I, Artaza J, Woodhouse L, Gonzalez-Cadavid N, Singh AB, Lee MI, Storer TW, Casaburi R, Shen R & Bhasin S 2002 Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. American Journal of Physiology – Endocrinology and Metabolism 283 E154–E164.

Sinha-Hikim I, Roth SM, Lee MI & Bhasin S 2003 Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. American Journal of Physiology – Endocrinology and Metabolism 285 E197–E205.

Joubert Y, Tobin C & Lebart MC 1994 Testosterone-induced masculinization of the rat levator ani muscle during puberty. Developmental Biology 162 104–110.

Sinha‐Hikim, I., Taylor, W., Gonzalez-Cadavid, N., Zheng, W., & Bhasin, S. (2004). Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment.. The Journal of clinical endocrinology and metabolism, 89 10, 5245-55 . https://doi.org/10.1210/JC.2004-0084.

Colla, A., Pronsato, L., Milanesi, L., & Vasconsuelo, A. (2015). 17β-Estradiol and testosterone in sarcopenia: Role of satellite cells. Ageing Research Reviews, 24, 166-177. https://doi.org/10.1016/j.arr.2015.07.011.

Lewis MI , Horvitz GD, Clemmons DR ve Fournier M 2002 Diyafram kasındaki IGF-I ve IGF bağlayıcı proteinlerin nandrolonun etkilerini düzenlemedeki rolü. Amerikan Fizyoloji Dergisi – Endokrinoloji ve Metabolizma 282 E483 –E490.

Kamanga-Sollo E , Pampusch MS, Xi G, White ME, Hathaway MR ve Dayton WR 2004 Sığır uydu hücre kültürlerinde IGF-I mRNA düzeyleri: füzyon ve anabolik steroid tedavisinin etkileri. Hücre Fizyolojisi Dergisi 201 181 –189.

Ferrando AA , Sheffield-Moore M, Yeckel CW, Gilkison C, Jiang J, Achacosa A, Lieberman SA, Tipton K, Wolfe RR ve Urban RJ 2002 Yaşlı erkeklere testosteron verilmesi kas fonksiyonunu iyileştirir: moleküler ve fizyolojik mekanizmalar. Amerikan Fizyoloji Dergisi – Endokrinoloji ve Metabolizma 282 E601 –E607.

Mauras N , Hayes V, Welch S, Rini A, Helgeson K, Dokler M, Veldhuis JD ve Urban RJ 1998 Genç erkeklerde testosteron eksikliği: tüm vücut protein kinetiğinde, kuvvetinde ve yağlanmada belirgin değişiklikler. Klinik Endokrinoloji ve Metabolizma Dergisi 83 1886–1892 .

Thompson SH , Boxhorn LK, Kong WY ve Allen RE 1989 Trenbolone, iskelet kası uydu hücrelerinin fibroblast büyüme faktörüne ve insülin benzeri büyüme faktörü I'e tepkisini değiştirir. Endokrinoloji 124 2110–2117 .

Collins, B., Arpke, R., Larson, A., Baumann, C., Xie, N., Cabelka, C., Nash, N., Juppi, H., Laakkonen, E., Sipilä, S., Kovanen, V., Spangenburg, E., Kyba, M., & Lowe, D. (2018). Estrogen Regulates the Satellite Cell Compartment in Females. Cell reports, 28, 368 - 381.e6. https://doi.org/10.1101/331777.

Oxfeldt, M., Dalgaard, L., Farup, J., & Hansen, M. (2022). Sex Hormones and Satellite Cell Regulation in Women. Translational Sports Medicine, 2022. https://doi.org/10.1155/2022/9065923.

Kim, J., Han, G., Seo, J., Park, I., Park, W., Jeong, H., Lee, S., Bae, S., Seong, J., Yum, M., Hann, S., Kwon, Y., Seo, D., Choi, M., & Kong, Y. (2016). Sex hormones establish a reserve pool of adult muscle stem cells. Nature Cell Biology, 18, 930-940. https://doi.org/10.1038/ncb3401.

Colla, A., Pronsato, L., Milanesi, L., & Vasconsuelo, A. (2015). 17β-Estradiol and testosterone in sarcopenia: Role of satellite cells. Ageing Research Reviews, 24, 166-177. https://doi.org/10.1016/j.arr.2015.07.011.

Jomard, C., & Gondin, J. (2023). Influence of sexual dimorphism on satellite cell regulation and inflammatory response during skeletal muscle regeneration. Physiological Reports, 11. https://doi.org/10.14814/phy2.15798.

Cornelison DD & Wold BJ 1997 Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Developmental Biology 191 270–283.

Mackey, A. L., Karlsen, A., Couppe, C., Mikkelsen, U. R., Nielsen, R. H., Magnusson, S. P., et al. (2014). Differential satellite cell density of type I and II fibres with lifelong endurance running in old men. Acta Physiol. 210, 612–627. doi: 10.1111/apha.12195

Leenders, M., Verdijk, L. B., van der Hoeven, L., van Kranenburg, J., Nilwik, R., and van Loon, L. J. (2013). Elderly men and women benefit equally from prolonged resistance-type exercise training. J. Geront. Ser. A Biol. Sci. Med. Sci. 68, 769–779. doi: 10.1093/gerona/gls241

Verdijk, L. B., Snijders, T., Beelen, M., Savelberg, H. H., Meijer, K., Kuipers, H., et al. (2010). Characteristics of muscle fiber type are predictive of skeletal muscle mass and strength in elderly men. J. Am. Geriatr. Soc. 58, 2069–2075. doi: 10.1111/j.1532-5415.2010. 03150.x

Verdijk, L. B., Snijders, T., Drost, M., Delhaas, T., Kadi, F., and van Loon, L. J. (2014). Satellite cells in human skeletal muscle; from birth to old age. Age 36, 545–547. doi: 10.1007/s11357-013-9583-2

Bu etki türe, yaşa, kas tipine ve kullanılan belirteçlere bağlı olarak değişir. Uydu hücresi havuzunun tükenmesine ek olarak, yaşlanma sırasında bireysel uydu hücrelerinin miyojenik kapasitesi de bozulur (Brack & Rando, 2007).

Brack, A. S., & Rando, T. A. (2007). Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem cell reviews, 3(3), 226-237.

Yayınlanan

19 Ocak 2026

Lisans

Lisans