Egzersiz, Endokrin Sistem ve Stres Dengesi
Özet
Bu bölümde güncel fizyolojik ve nöroendokrin yaklaşımlar doğrultusunda, egzersizin endokrin sistem ve stres dengesi üzerindeki etkileri ele alınmaktadır. Egzersizin yalnızca kas-iskelet sistemini etkileyen bir fiziksel aktivite olmadığı; hipotalamo-hipofiz-adrenal (HPA), hipotalamo-hipofiz-tiroid (HPT) ve hipotalamo-hipofiz-gonadal (HPG) eksenleri üzerinden stres, metabolizma ve üreme fonksiyonlarını düzenleyen bütüncül bir biyolojik uyarı olduğu vurgulanmaktadır. Akut egzersizin kortizol, katekolaminler ve büyüme hormonu gibi stresle ilişkili hormonlarda geçici artışlara yol açtığı fakat düzenli ve uzun süreli egzersizin bu hormonal yanıtları daha dengeli ve ekonomik bir düzeye taşıdığı belirtilmektedir. Bu süreç, allostaz ve allostatik yük kavramları çerçevesinde değerlendirilerek, uygun dozda egzersizin stres sistemlerinin adaptasyon kapasitesini artırdığı ve allostatik yükü azaltabildiği ortaya konmuştur. Bölümde ayrıca kas dokusunun miyokinler aracılığıyla beyin, metabolik ve bağışıklık sistemleriyle kurduğu etkileşim, enerji homeostazında görev alan hormonların düzenlenmesi ve egzersizin nöroplastisite üzerindeki koruyucu etkileri tartışılmaktadır. Sonuç olarak, bireysel özellikler ve enerji uygunluğu gözetilerek planlanan egzersizin hormonal denge ve stres yönetiminde temel bir düzenleyici olduğu sonucuna varılmaktadır.
Referanslar
Achari, A. E., & Jain, S. K. (2017). Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. International Journal of Molecular Sciences, 18(6), 1321. https://doi.org/10.3390/ijms18061321
Alack, K., Pilat, C., & Krüger, K. (2019). Current knowledge and new challenges in exercise immunology. Dtsch Z Sportmed, 70(10), 250-60.
Angelidi, A. M., Stefanakis, K., Chou, S. H., Valenzuela-Vallejo, L., Dipla, K., Boutari, C., ... & Mantzoros, C. S. (2024). Relative energy deficiency in sport (REDs): endocrine manifestations, pathophysiology and treatments. Endocrine Reviews, 45(5), 676-708.
Athanasiou, N., Bogdanis, G. C., & Mastorakos, G. (2023). Endocrine responses of the stress system to different types of exercise. Reviews in Endocrine and Metabolic Disorders, 24(2), 251-266.
Beese, S., Postma, J., & Graves, J. M. (2022). Allostatic load measurement: a systematic review of reviews, database inventory, and considerations for neighborhood research. International journal of environmental research and public health, 19(24), 17006.
Behrendt, T., Kirschnick, F., Kröger, L., Beileke, P., Rezepin, M., Brigadski, T., ... & Schega, L. (2021). Comparison of the effects of open vs. closed skill exercise on the acute and chronic BDNF, IGF-1 and IL-6 response in older healthy adults. BMC neuroscience, 22(1), 71.
Bu, S., & Li, Y. (2023). Physical activity is associated with allostatic load: Evidence from the National Health and Nutrition Examination Survey. Psychoneuroendocrinology, 154, 106294.
Budde, H., Wegner, M., Ahrens, C., Velasques, B., Ribeiro, P., Machado, S., ... & Mueller-Alcazar, A. (2025). Effects of Acute Coordinative vs. Endurance Exercise on Cortisol Concentration in Healthy Women and Men. Sports Medicine-Open, 11(1), 72.
Campbell, J. P., & Turner, J. E. (2018). Debunking the myth of exercise-induced immune suppression: redefining the impact of exercise on immunological health across the lifespan. Frontiers in immunology, 9, 332016.
De Nys, L., Anderson, K., Ofosu, E. F., Ryde, G. C., Connelly, J., & Whittaker, A. C. (2022). The effects of physical activity on cortisol and sleep: A systematic review and meta-analysis. Psychoneuroendocrinology, 143, 105843.
Guan, Y., Shen, J., Lu, J., Fuemmeler, B. F., Shock, L. S., & Zhao, H. (2025). Allostatic load score and lifestyle factors in the SWAN cohort: A longitudinal analysis. Public Health in Practice, 9, 100590.
Haack, D., Luu, H., Cho, J., Chen, M. J., & Russo-Neustadt, A. (2008). Exercise reverses chronic stress-induced Bax oligomer formation in the cerebral cortex. Neuroscience letters, 438(3), 290-294.
Haack, M., Kraus, T., Schuld, A., Dalal, M., Koethe, D., & Pollmächer, T. (2008). Diurnal variations of interleukin-6 plasma levels are confounded by blood drawing procedures. Psychoneuroendocrinology, 27(8), 921–931.
Hackney, A. C. (2006). Stress and the neuroendocrine system: The role of exercise as a stressor and modifier of stress. Expert Review of Endocrinology & Metabolism, 1(6), 783–792.
Hackney, A. C. (2010). Exercise as a stressor to the human neuroendocrine system. Medicine & Sport Science, 53, 41–63.
Hanke, L., Hofmann, K., Krüger, A. L., Hoewekamp, L., Wellberich, J. M., Koper, B., & Diel, P. (2025). Effects of endurance training on thyroid response in pre-and postmenopausal women. Sport Sciences for Health, 21(1), 83-92.
Hill, E. E., Zack, E., Battaglini, C., Viru, M., Viru, A., & Hackney, A. C. (2008). Exercise and circulating cortisol levels: The intensity threshold effect. Journal of Endocrinological Investigation, 31(7), 587–591.
Juster, R. P., McEwen, B. S., & Lupien, S. J. (2010). Allostatic load biomarkers of chronic stress and impact on health and cognition. Neuroscience & Biobehavioral Reviews, 35(1), 2-16.
Kostka, M., Morys, J., Małecki, A., & Nowacka-Chmielewska, M. (2024). Muscle–brain crosstalk mediated by exercise-induced myokines: Insights from experimental studies. Frontiers in Physiology, 15, 1488375.
Kraemer, R. R., & Kraemer, B. R. (2023). The effects of peripheral hormone responses to exercise on adult hippocampal neurogenesis. Frontiers in Endocrinology, 14, 1202349.
Kraemer, W. J., & Ratamess, N. A. (2005). Hormonal responses and adaptations to resistance exercise and training. Sports Medicine, 35(4), 339–361.
Lei, A. A., Phang, V. W. X., Lee, Y. Z., Kow, A. S. F., Tham, C. L., Ho, Y. C., & Lee, M. T. (2025). Chronic Stress-Associated Depressive Disorders: The Impact of HPA Axis Dysregulation and Neuroinflammation on the Hippocampus—A Mini Review. International Journal of Molecular Sciences, 26(7), 2940.
Mahalakshmi, B., Maurya, N., Lee, S. D., & Bharath Kumar, V. (2020). Possible neuroprotective mechanisms of physical exercise in neurodegeneration. International journal of molecular sciences, 21(16), 5895.
Marliss, E. B., & Vranic, M. (2002). Intense exercise has unique effects on both insulin release and its roles in glucoregulation. Sports Medicine, 32(9), 571–577.
Martins, C., Morgan, L. M., Bloom, S. R., & Robertson, M. D. (2020). Effects of exercise on gut peptides, energy intake and appetite. Obesity Reviews, 21(2), e12970.
McCrory, C., McLoughlin, S., Layte, R., NiCheallaigh, C., O’halloran, A. M., Barros, H., ... & Kenny, R. A. (2023). Towards a consensus definition of allostatic load: a multi-cohort, multi-system, multi-biomarker individual participant data (IPD) meta-analysis. Psychoneuroendocrinology, 153, 106117.
McEwen, B. S. (2017). Neurobiological and systemic effects of chronic stress. Chronic Stress, 1, 1–11.
McEwen, B. S., & Wingfield, J. C. (2010). What is in a name? Integrating homeostasis, allostasis and stress. Hormones and Behavior, 57(2), 105–111.
McMurray, R. G., & Hackney, A. C. (2005). Interactions of metabolic hormones, adipose tissue, and exercise. Sports Medicine, 35(5), 393–412.
Mennitti, C., Farina, G., Imperatore, A., De Fonzo, G., Gentile, A., La Civita, E., ... & Scudiero, O. (2024). How does physical activity modulate hormone responses?. Biomolecules, 14(11), 1418.
Molina-Hidalgo, C., Stillman, C. M., Collins, A. M., Velazquez-Diaz, D., Ripperger, H. S., Drake, J. A., ... & Erickson, K. I. (2023). Changes in stress pathways as a possible mechanism of aerobic exercise training on brain health: A scoping review of existing studies. Frontiers in physiology, 14, 1273981.
Morton, G. J., Meek, T. H., & Schwartz, M. W. (2014). Neurobiology of food intake in health and disease. Nature Reviews Neuroscience, 15(6), 367–378.
Nieman, D. C., & Pedersen, B. K. (1999). Exercise and immune function: recent developments. Sports medicine, 27(2), 73-80.
Pedersen, B. K. (2019). Physical activity and muscle–brain crosstalk. Nature Reviews Endocrinology, 15(7), 383–392.
Pedersen, B. K., & Febbraio, M. A. (2012). Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nature Reviews Endocrinology, 8(8), 457–465.
Raastad, T., Bjøro, T., Hallén, J., & Bahr, R. (2000). Hormonal responses to high- and moderate-intensity strength exercise. European Journal of Applied Physiology, 82(1–2), 121–128.
Romero Garavito, A., Díaz Martínez, V., Juárez Cortés, E., Negrete Díaz, J. V., & Montilla Rodríguez, L. M. (2025). Impact of physical exercise on the regulation of brain-derived neurotrophic factor in people with neurodegenerative diseases. Frontiers in Neurology, 15, 1505879.
Seeman, T. E., McEwen, B. S., Rowe, J. W., & Singer, B. H. (2001). Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proceedings of the National Academy of Sciences, 98(8), 4770-4775.
Selye, H. (1956). The Stress of Life. New York: McGraw-Hil
Souza, D., Vale, A. F., Silva, A., Araujo, M. A., de Paula Júnior, C. A., de Lira, C. A., ... & Gentil, P. (2021). Acute and chronic effects of interval training on the immune system: A systematic review with meta-analysis. Biology, 10(9), 868.
Sundus, H., Khan, S. A., Zaidi, S., Chhabra, C., Ahmad, I., & Khan, H. (2025). Effect of long-term exercise-based interventions on thyroid function in hypothyroidism: A systematic review and meta-analysis of randomized controlled trials. Complementary Therapies in Medicine, 103196.
Walsh, N. P. (2019). Nutrition and athlete immune health: new perspectives on an old paradigm. Sports Medicine, 49(Suppl 2), 153-168.
Yatsutani, H., Mori, H., Ito, H., Hayashi, N., Girard, O., & Goto, K. (2020). Endocrine and metabolic responses to endurance exercise under hot and hypoxic conditions. Frontiers in Physiology, 11, 932.