Inborn Errors of Immunity in Apoptosis and Autophagy
Özet
Referanslar
Akalu YT, Bogunovic D. Inborn errors of immunity: an expanding universe of disease and genetic architecture. Nat Rev Genet. 2024;25:184-95
Poli MC, Aksentijevich I, Bousfiha AA, et al. Human inborn errors of immunity: 2024 update on the classification from the International Union of Immunological Societies Expert Committee. J Hum Immun. 2025; 1 (1): e20250003. doi: https://doi.org/10.70962/jhi.20250003
Kilic SS, Ozel M, Hafizoglu D, et al. The prevalences [correction] and patient characteristics of primary immunodeficiency diseases in Turkey--two centers study. Journal of Clinical Immunology. 2013;33(1):74-83. doi: 10.1007/s10875-012-9763-3
Lugo Reyes SO, Condino-Neto A, Stepensky P. Global perspectives on primary immune deficiency diseases. Stiehm's Immune Deficiencies. 2020:1129–42. doi: 10.1016/B978-0-12-816768-7.00054-5
Stray-Pedersen A, Sorte HS, Samarakoon P, et al. Primary immunodeficiency diseases: Genomic approaches delineate heterogeneous Mendelian disorders. J Allergy Clin Immunol. 2017;139(1):232-245. doi: 10.1016/j.jaci.2016.05.042. Epub 2016 Jul 16. Erratum in: J Allergy Clin Immunol. 2018 Feb;141(2):832. doi: 10.1016/j.jaci.2017.12.975
Turul T, et al. Primer İmmün Yetmezlik Hastalıklarına Yaklaşım, TTB STED, 2003;12 :7,253
Picarda C, Fusaroa M, Kashefb S, et al. Combined immune deficiencies (CIDs). 2nd ed. Elsevier Academıc Press. 2020. p. 208-268
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee onCell Death. Cell Death and Differentiation. 2018;25 (3): 486-541. doi:10.1038/s41418-017-0012-4
Christgen S, Tweedell RE, Kanneganti TD. Programming inflammatory cell death for therapy. Pharmacology & Therapeutics. 2022; 232, 108010. doi: 10.1016/j.pharmthera.2021.108010
Krammer PH, Arnold R, Lavrik IN. Life and death in peripheral T cells. Nat Rev Immunol.2007;7:532–42
Gupta S. A decision between life and death during TNF-alpha induced signaling. Journal of Clinical Immunology. 2002;22:185–94
Pereira WO, Amarante-Mendes GP. Apoptosis: a programme of cell death or cell disposal? Scandinavian Journal of Immunology. 2011;73(5):401-7
Troiano L, Ferraresi R, Lugli E, et al. Multiparametric analysis of cells with different mitochondrial membrane potential during apoptosis by polychromatic flow cytometry. Nature Protocols. 2007;2(11):2719-27
Green DR. The death receptor pathway of apoptosis. Cold Spring Harb Perspect Biol. 2022;14(2): a041053
Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A. Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis. 2023;28(5-6):730-753
Bousfiha AA, Jeddane L, Moundir A, et al. The 2024 update of IUIS phenotypic classification of human inborn errors of immunity. J Hum Immun. 2025; 1 (1): e20250002
Canale VC, Smith CH. Chronic lymphadenopathy simulating malignant lymphoma. J Pediatr. 1967;70(6):891e9
Sneller MC, Straus SE, Jaffe ES, et al. A novel lymphoproliferative/autoimmune syndrome resembling murine lpr/gld disease. J Clin Invest. 1992;90(2):334e41
Rieux-Laucat F, Le Deist F, Hivroz C, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 1995;268(5215):1347e9
Drappa J, Vaishnaw AK, Sullivan KE, et al. Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med. 1996;335(22):1643e9
Nie HJ, Zheng L, Ahmad M, et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature. 2002;419(6905):395e9
Niemela J, Kuehn HS, Kelly C, et al. Caspase-8 deficiency presenting as late-onset multi-organ lymphocytic infiltration with granulomas in two adult siblings. Journal of Clinical Immunology. 2015;35(4):348e55
Su HC, Lenardo MJ. Genetic defects of apoptosis and primary immunodeficiency. Immunol Allergy Clin North Am. 2008 May;28(2):329-51, ix. doi: 10.1016/j.iac.2008.01.002
Holzelova E, Vonarbourg C, Stolzenberg MC, et al. Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N Engl J Med. 2004;351(14):1409e18
Dowdell KC, Niemela JE, Price S, et al. Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome. Blood. 2010;115(25):5164e9
Consonni F, Gambineri E, Favre, C. ALPS, FAS, and beyond: from inborn errors of immunity to acquired immunodeficiencies. Ann Hematol. 2022. 101, 469–484
Vacek MM, Schäffer AA, Davis J, et al. HLA B44 is associated with decreased severity of autoimmune lymphoproliferative syndrome in patients with CD95 defects (ALPS type Ia). Clin Immunol. 2006;118(1):59-65. doi: 10.1016/j.clim.2005.09.006
Sobh A, Crestani E, Cangemi B, et al. Autoimmune lymphoproliferative syndrome caused by a homozygous FasL mutation that disrupts FasL assembly. J Allergy Clin Immunol. 2016;137(1). 324e327 e2
Nabhani S, Honscheid A, Oommen PT, et al. A novel homozygous Fas ligand mutation leads to early protein truncation, abrogation of death receptor and reverse signaling and a severe form of the autoimmune lymphoproliferative syndrome. Clin Immunol. 2014;155(2):231e7
Wu J, Wilson J, He J, et al. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest 1996;98(5):1107e13
Del-Rey M, Ruiz-Contreras J, Bosque A, et al. A homozygous Fas ligand gene mutation in a patient causes a new type of autoimmune lympho proliferative syndrome. Blood. 2006;108(4):1306e12
Zhu S, Hsu AP, Vacek MM, et al. Genetic alterations in caspase-10 may be causative or protective in autoimmune lymphoproliferative syndrome. Hum Genet. 2006;119(3):284e94
Miano M, Cappelli E, Pezzulla A, et al. FAS-mediated apoptosis impairment in patients with ALPS/ALPS-like phenotype carrying variants on CASP10 gene. Br J Haematol. 2019;187(4):502e8
Oliveira JB, Bidère N, Niemela JE, et al. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci U S A. 2007; 22;104(21):8953-8. doi: 10.1073/pnas.0702975104
Sneller MC, Wang J, Dale JK, et al. Clinical, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood. 1997;89(4):1341e8
Oliveira JB, Bleesing JJ, Dianzani U, et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 2010;116(14):e35e40
Caminha I, Fleisher TA, Hornung RL, et al. Using biomarkers to predict the presence of FAS mutations in patients with features of the autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol. 2010;125(4):946-949.e6. doi: 10.1016/j.jaci.2009.12.983
Takagi M, Shinoda K, Piao J, et al. Autoimmune lymphoproliferative syndrome-like disease with somatic KRAS mutation. Blood. 2011;117(10):2887e90
Tran TAN, Grow WB, Chang CC. Superficial and deep cutaneous involvement by RAS-associated autoimmunne leukoproliferative disease (RALD cutis): a histologic mimicker of histiocytoid Sweet syndrome. Am J Dermatopathol. 2019;41(8):606e10
Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170(1):17e33
O’Reilly LA, Kruse EA, Puthalakath H, et al. MEK/ERK-mediated phosphorylation of Bim is required to ensure survival of T and B lymphocytes during mitogenic stimulation. J Immunol. 2009;183(1):261e9
Limnander A, Depeille P, Freedman TS, et al. STIM1, PKC-delta and RasGRP set a threshold for proapoptotic Erk signaling during B cell development. Nat Immunol. 2011;12(5):425e33
Su H, Bidere N, Zheng L, et al. Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science. 2005;307(5714):1465–1468
Latour S, Aguilar C. XIAP deficiency syndrome in humans. Semin Cell Dev Biol. 2015;39:115–23. doi: 10.1016/j.semcdb.2015.01.015
Damgaard RB, Nachbur U, Yabal M, et al. The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol Cell. 2012;46(6):746e58
Krieg A, Correa RG, Garrison JB, et al. XIAP mediates NOD signaling via interaction with RIP2. Proc Natl Acad Sci USA. 2009;106(34):14524e9
Makkoukdji N, Satnarine T, de Almeida AX, et al. Inborn Errors of Immunity in Apoptosis. Front Biosci (Landmark Ed). 2025;20;30(5):27231. doi: 10.31083/FBL27231
Cannons JL, Tangye SG, Schwartzberg PL. SLAM family receptors and SAP adaptors in immunity. Annu Rev Immunol. 2011; 29:665e705
Sharifi R, Sinclair JC, Gilmour KC, et al. SAP mediates specific cytotoxic T-cell functions in X-linked lymphoproliferative disease. Blood. 2004;103(10):3821e7
Thorley-Lawson DA, Schooley RT, Bhan AK, et al. Epstein-Barr virus superinduces a new human B cell differentiation antigen (B-LAST 1) expressed on transformed lymphoblasts. Cell. 1982;30(2):415e25
Dong Z, Cruz-Munoz ME, Zhong MC, et al. Essential function for SAP family adaptors in the surveillance of the matopoietic cells by natural killer cells. Nat Immunol. 2009;10(9):973e80
Coffey AJ, Brooksbank RA, Brandau O, et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet. 1998;20(2):129e35
Nichols KE, Harkin DP, Levitz S, et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc Natl Acad Sci USA. 1998;95(23):13765e70
Sayos J, Wu C, Morra M, et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature. 1998;395(6701):462e9
Marsh RA. Epstein–Barr Virus and Hemophagocytic Lymphohistiocytosis. Front. Immunol. 2018; 8:1902. doi: 10.3389/fimmu.2017.01902
Chen G, Tai AK, Lin M, et.al. Increased proliferation of CD8(+) T cells in SAP-deficient mice is associated with impaired activation-induced cell death. Eur J Immunol .2007;37(3):663–674
Setia P, Bargir UA, Shanmukhaiah C, et al. FADD Deficiency Mimicking ALPS-FAS: An Expanding Phenotype. Research Square. 2021. doi: 10.21203/rs.3.rs-995974/v1
Kathleen ES, Stiehm ER. Stiehm's Immune Deficiencies, Inborn Errors of Immunity. Academic Press. 2020;978-0-12-816768-7. doi: 10.1016/C2018-0-01272-4
Huppi K, Siwarski D, Goodnight J, et al. Assignment of the protein kinase C delta polypeptide gene (PRKCD) to human chromosome 3 and mouse chromosome 14. Genomics. 1994;19(1):161–2
Neehus AL, Moriya K, Nieto-Patlán A, et al. Impaired respiratory burst contributes to infec tions in PKCδ-deficient patients. J Exp Med. 2021;218(9):e20210501
Hu X, Li J, Fu M, et al. The JAK/STAT sig naling pathway: from bench to clinic. Signal Transduction and Targeted Therapy. 2021; 6: 402
Chaimowitz NS, Smith MR, Forbes Satter LR. JAK/STAT defects and immune dysregulation, and guiding therapeutic choices. Immunological Reviews. 2024; 322: 311–328
Minegishi Y, Saito M, Morio T, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006; 25: 745–755
Sarrafzadeh SA, Mahloojirad M, Casanova JL, et al. A New Pa tient with Inherited TYK2 Deficiency. Journal of Clinical Immunology. 2020; 40: 232–235
Dotta L, Todaro F, Baronio M, et al. Patients with STAT1 Gain-of-function Mutations Display Increased Apoptosis which is Reversed by the JAK Inhibitor Ruxolitinib. Journal of Clinical Immunology. 2024; 44: 85
Flanagan SE, Haapaniemi E, Russell MA, et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nature Genetics. 2014; 46: 812–814
Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews. Cancer. 2009; 9: 798–809
Kaneko S, Sakura F, Tanita K, et al. Janus kinase inhibitors ameliorate clinical symptoms in pa tients with STAT3 gain-of-function. Immunotherapy Advances. 2023; 3: ltad027
Huang B, Lang X, Li X. The role of IL-6/JAK2/STAT3signaling pathway in cancers. Frontiers in Oncology. 2022; 12: 1023177
Freeman AF, Holland SM. The hyper-IgE syndromes. Immunology and Allergy Clinics of North America. 2008; 28: 277–91
Chandesris MO, Melki I, Natividad A, et al. Autosomal dominant STAT3 deficiency and hyper IgE syndrome: molecular, cellular, and clinical features from a French national survey. Medicine. 2012; 91: e1–e19
Woellner C, Gertz EM, SchäfferAA, et al. Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. The Journal of Allergy and Clinical Immunology. 2010; 125: 424–432.e8
Shaheen M, Broxmeyer HE. Cytokine/Receptor Families and Signal Transduction. 7nd ed. Elsevier: the Netherlands. 2018
Sigurdsson S, Nordmark G, Garnier S, et al. A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5. Human Molecular Genetics. 2008; 17: 2868–2876
Debierre-Grockiego F. Anti-apoptotic role of STAT5 in haematopoietic cells and in the pathogenesis of malignan cies. Apoptosis: an International Journal on Programmed Cell Death. 2004; 9: 717–728
Casanova JL, Holland SM, Notarangelo LD. Inborn errors of human JAKs and STATs. Immunity. 2012; 36: 515–528. doi.org/10.1016/j.immuni.2012.03.016
Behbod F, Nagy ZS, Stepkowski SM, et al. Specific inhibition of Stat5a/b promotes apop tosis of IL-2-responsive primary and tumor-derived lymphoid cells. Journal of Immunology (Baltimore, Md.: 1950). 2003; 171: 3919–3927
Bandapalli OR, Schuessele S, Kunz JB, et al. The activating STAT5B N642H mutation is a common abnormality in pediatric T-cell acute lymphoblastic leukemia and confers a higher risk of relapse. Haematologica. 2014; 99: e188–e192
Eisenberg R, Gans MD, Leahy TR, et al. JAK inhibition in early-onset somatic, nonclonal STAT5B gain-of-function disease. The Journal of Allergy and Clinical Immunology in Practice. 2021; 9: 1008–1010.e2
Sharma M, Leung D, Momenilandi M, et al. Human germline heterozygous gain-of-function STAT6variants cause severe allergic disease. The Journal of Experimental Medicine. 2023; 220: e20221755
Minskaia E, Maimaris J, Jenkins P, et al. Autosomal Dominant STAT6 Gain of Function Causes Severe Atopy Associated with Lymphoma. Journal of Clinical Immunology. 2023; 43: 1611–1622
Makkoukdji N, Pundit V, Wyke M, et al. Targeted treatments for immune dysregulation in inborn errors of immunity. Exploration of Immunology. 2024; 4: 218–237
Notarangelo LD, Mella P, Jones A, et al. Mutations in severe combined immunedeficiency (SCID) due to JAK3 deficiency. Human Mutation. 2001; 18: 255–263
Körholz J, Gabrielyan A, Sowerby JM, et al. One Gene, Many Facets: Multiple Immune Pathway Dysregulation in SOCS1 Haploinsufficiency. Frontiers in Immunology. 2021; 12: 680334
Hadjadj J, Castro CN, Tusseau M, et al. Early-onset autoimmunity associated with SOCS1 haploinsufficiency. Nature Communications. 2020; 11: 5341. doi.org/10.1038/s41467-020-18925-4
Grimbacher B, Warnatz K, Yong PFK, et al. The crossroads of autoimmunity and immunodeficiency: Lessons from polygenic traits and monogenic defects. The Journal of Allergy and Clinical Immunology. 2016; 137: 3–17
Meuwissen ME, Halley DJ, Smit LS, et al. The expanding phenotype of COL4A1 and COL4A2 mutations: clinical data on 13 newly identified families and a review of the literature. Genet. Med. 2015. 17:843–853
Liu LQ, Ilaria R Jr, Kingsley PD,et al.A novel ubiquitin-specific protease, UBP43, cloned from leukemia fusion protein AML1-ETO-expressing mice, functions in hematopoietic cell differentiation. Mol Cell Biol. 1999; 19:3029–3038
Malakhov MP, Malakhova OA, Kim KI, et al. UBP43 (USP18) specifically removes ISG 15 from conjugated proteins. J Biol Chem. 2002; 277:9976–9981
Honke N, Shaabani N, Zhang DE, et al. Multiple functions of USP18. Cell Death Dis. 2016;7: e24442016
Friedrich SK, Schmitz R, Bergerhausen M, et al: Usp18 expression in CD169+ macrophages is important for strong immune response after vaccination with VSV-EBOV. Vaccines (Basel). 2020; 8:1422020
Zhang, X, Bogunovic D, Payelle-Brogard B, et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature. 2015. 517:89–93. doi.org/10.1038/ nature13801
Rice, GI, Kasher PR, Forte GM, et al. Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat. Genet. 2012; 44:1243–1248
Cuervo AM. Autophagy: in sickness and in health. Trends Cell Biology, 2004;14(2):70-7
He L, Zhang J, Zhao J, et al. Autophagy: The last defense against cellular nutritional stress. Advances in Nutrition. 2018;1;9(4):493-504
Guo F, Liu X, Cai H, et al. Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathology. 2018;28(1):3-13
Zhao J, Zhai B, Gygi SP, et al. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc National Academy of Sciences. 2015;29;112(52):15790-7
Bento CF, Renna M, Ghislat G, et al. Mammalian autophagy: How does it work? Annual Review of Biochemistry. 2016; 2; 85:685-713
Chun Y, and Kim J. Autophagy: An essential degradation program for cellular homeostasis and life. Cells. 2018;19;7(12):278
Jewell JL, Russell RC, and Guan KL. Amino acid signalling upstream of mTOR. Nature Reviews Molecular Cell Biology. 2016;14(3):133-9
Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes & Development. 2011;15;25(18):1895-908
Liu Y, Shoji-Kawata S, Sumpter RM Jr, et al. Autosis is a Na+, K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proceedings of the National Academy of Sciences, 2013;17;110(51):20364-71
Kondo Y, Kanzawa T, Sawaya R, et al. The role of autophagy in cancer development and response to therapy. Nature Reviews Cancer, 2005;5(9):726-34
Baehrecke EH. Autophagy: dual roles in life and death? Nature Reviews Molecular Cell Biology. 2005;6(6):505-10
Edinger A and Thompson C. Death by design: Apoptosis, necrosis and autophagy. Current Opinion in Cell Biology. 2004;6, 663–669
Perrone L, Squillaro T, Napolitano F, et al. The autophagy signaling pathway: A potential multifunctional therapeutic target of curcumin in neurological and neuromuscular diseases. Nutrients, 2019; 13;11(8):1881.
FujitaN, Hayashi-Nishino M, Fukumoto H, et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Molecular Biology of the Cell. 2008;19, 4651–4659
Catucci M, Castiello MC, Pala F, et al. Autoimmunity in Wiskott-Aldrich syndrome: an unsolved enigma. Front. Immunol. 2012;3, 209
Thrasher A J and Burns SO. WASP: a key immunological multitasker. Nat. Rev. Immunol. 2010. 10, 182–192
Massaad, M J, Ramesh N, Geha RS. Wiskott–Aldrich syndrome: a comprehensive review. Ann. NY Acad. Sci. 2013;1285,26–43
Worth AJ and Thrasher AJ. Current and emerging treatment options for Wiskott-Aldrich syndrome. Expert Rev Clin Immunol. 2015;11(9):1015-32 doi: 10.1586/1744666X.2015.1062366
Rivers E, Worth A, Thrasher AJ, et al. How I manage patients with Wiskott Aldrich syndrome. British Journal of Haematology. 2019;185(4): 647–655
Sullivan KE, Mullen CA, Blaese RM, et al. A multiinstitutional survey of the Wiskott-Aldrich syndrome. J Pediatr. 1994;125(6 Pt 1):876-85. doi: 10.1016/s0022-3476(05)82002-5
Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell. 1994; 26;78(4):635-44. doi: 10.1016/0092-8674(94)90528-2
Ferguson SM. Axonal transport and maturation of lysosomes. Curr Opin Neurobiol. 2018; 51:45–51
Lie PPY and Nixon RA. Lysosome trafficking and signaling in health and neurodegenerative diseases. Neurobiol Dis. 2019; 122:94 105
Chediak-Higashi Syndrome (accessed in 14/11/2025, https://www.ncbi.nlm.nih.gov/books/NBK5188/?utm_source ).
Cader, MZ, Almeida Rodrigues RP, West JA, et al. FAMIN Is a Multifunctional Purine Enzyme Enabling the Purine Nucleotide Cycle. Cell. 2020; 180:278–295.e23
Bhasin M, Yuan L, Keskin DB, etal. Bioinformatic identification and characterization of human endothelial cell-restricted genes. BMC Genom. 2010; 11:342
Pascall, JC, Rotondo S, Mukadam AS, et al. The immune system GTPase GIMAP6 interacts with the Atg8 homologue GABAR APL2 and is recruited to autophagosomes. PLoS One. 2013;8: e77782
Yue X, Acun A, Zorlutuna P. Transcriptome profiling of 3D co cultured cardiomyocytes and endothelial cells under oxidative stress using a photo cross linkable hydrogel system. Acta Biomater. 2017; 58:337–348
Yao Y, Du Jiang P, Chao BN, et al. GIMAP6 regulates autophagy, immune competence, and inflammation in mice and humans. J Exp Med. 2022;6;219(6):e20201405. doi: 10.1084/jem.20201405
Lee YK, and Lee JA. Role of the mammalian ATG8/LC3 family in autophagy: Differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Rep. 2016; 49:424–430
Zhang N, Yang X, Yuan F, et al. Increased amino acid uptake supports autophagy-deficient cell survival upon glutamine deprivation. Cell Rep. 2018; 23:3006–3020
Shadur B, Asherie N, Kfir-Erenfeld S, et al. A human case of GIMAP6 deficiency: A novel primary immune deficiency. Eur. J. Hum. Genet. 2018; 29:657–662
Pascall JC, Webb LMC, Eskelinen EL, et al. GIMAP6 is required forT cell maintenance and efficient autophagy in mice. PLoS One. 2018; 13: e0196504.
Ho CH, and Tsai SF. Functional and biochemical characterization of a T cell-associated anti-apoptotic protein, GIMAP6. J. Biol. Chem. 2017;292: 9305–9319.