Mitophagy: The Process of Fine-Tuning Mitochondrial and Cellular Homeostasis

Yazarlar

Ahmet Çağlar Özketen

Özet

Referanslar

Evans A, Neuman N. The mighty mitochondria. Molecular Cell. 2016;61(5):641.

Kennedy EP, Lehninger AL. The products of oxidation of fatty acids by isolated rat liver mitochondria. Journal of Biological Chemistry. 1950;185(1):275-285.

Chandel NS. Mitochondria. Cold Spring Harbor Perspectives in Biology. 2021;13(3):a040543.

Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduction and Targeted Therapy. 2023;8(1):333.

El-Hattab AW, Craigen WJ, Scaglia F. Mitochondrial DNA maintenance defects. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2017;1863(6):1539-1555.

Uoselis L, Lindblom R, Lam WK, et al. Temporal landscape of mitochondrial proteostasis governed by the UPRmt. Science Advances. 2023;9(38):eadh8228.

Suomalainen A, Nunnari J. Mitochondria at the crossroads of health and disease. Cell. 2024;187(11):2601-2627.

Lu Y, Li Z, Zhang S, et al. Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 2023;13(2):736.

Yang M, Wei X, Yi X, et al. Mitophagy-related regulated cell death: molecular mechanisms and disease implications. Cell Death & Disease. 2024;15(7):505.

DArcy MS. Mitophagy in health and disease: molecular mechanisms, regulatory pathways, and therapeutic implications. Apoptosis. 2024;29(9):1415-1428.

Uoselis L, Nguyen TN, Lazarou M. Mitochondrial degradation: Mitophagy and beyond. Molecular cell. 2023 Oct 5;83(19):3404-20.

Palikaras K, Daskalaki I, Markaki M, et al. Tavernarakis N. Mitophagy and age-related pathologies: Development of new therapeutics by targeting mitochondrial turnover. Pharmacology & therapeutics. 2017;178:157-74.

Shires SE, Gustafsson ÅB. Mitophagy and heart failure. Journal of molecular medicine. 2015;93(3):253-62.

Zhang L, Dai L, Li D. Mitophagy in neurological disorders. Journal of neuroinflammation. 2021;18(1):297.

Liu S, Yao S, Yang H, et al. Autophagy: Regulator of cell death. Cell death & disease. 2023;14(10):648.

Vargas JN, Hamasaki M, Kawabata T, et al. The mechanisms and roles of selective autophagy in mammals. Nature reviews Molecular cell biology. 2023;24(3):167-85.

Hamasaki M, Furuta N, Matsuda A, et al. Autophagosomes form at ER–mitochondria contact sites. Nature. 2013;495(7441):389-93.

Chen M, Ren X, Cook AS, et al. Structure and activation of the human autophagy-initiating ULK1C: PI3KC3-C1 supercomplex. Biophysical Journal. 2024;123(3):345a.

Hara T, Takamura A, Kishi C, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. The Journal of cell biology. 2008;181(3):497-510.

Panaretou C, Domin J, Cockcroft S, et al. Characterization of p150, an Adaptor Protein for the Human Phosphatidylinositol (PtdIns) 3-Kinase: Substrate Presentation by Phosphatidylinositol Transfer Protein to the p150·; PtdIns 3-KINASE COMPLEX. Journal of Biological Chemistry. 1997;272(4):2477-85.

Matsunaga K, Saitoh T, Tabata K, et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nature cell biology. 2009;11(4):385-96.

Zhong Y, Wang QJ, Li X, et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1–phosphatidylinositol-3-kinase complex. Nature cell biology. 2009;11(4):468-76.

Iershov A, Nemazanyy I, Alkhoury C, et al. The class 3 PI3K coordinates autophagy and mitochondrial lipid catabolism by controlling nuclear receptor PPARα. Nature Communications. 2019;10(1):1566.

King KE, Losier TT, Russell RC. Regulation of autophagy enzymes by nutrient signaling. Trends in Biochemical Sciences. 2021;46(8):687-700.

Zaffagnini G, Martens S. Mechanisms of selective autophagy. Journal of molecular biology. 2016;428(9):1714-24.

Klionsky DJ, Codogno P, Cuervo AM, et al. A comprehensive glossary of autophagy-related molecules and processes. Autophagy. 2010;6(4):438-48.

Juan CA, Pérez de la Lastra JM, Plou FJ, et al. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International journal of molecular sciences. 2021;22(9):4642.

Seirafi M, Kozlov G, Gehring K. Parkin structure and function. The FEBS journal. 2015;282(11):2076-88.

Rasool S, Shomali T, Truong L, et al. Identification and structural characterization of small molecule inhibitors of PINK1. Scientific reports. 2024;14(1):7739.

Rasool S, Veyron S, Soya N, et al. Mechanism of PINK1 activation by autophosphorylation and insights into assembly on the TOM complex. Molecular Cell. 2022;82(1):44-59.

Wauer T, Simicek M, Schubert A, et al. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature. 2015;524(7565):370-4.

Wang X, Winter D, Ashrafi G, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell. 2011;147(4):893-906.

Liu J, Zhang C, Zhao Y, et al. Parkin targets HIF-1α for ubiquitination and degradation to inhibit breast tumor progression. Nature communications. 2017;8(1):1823.

Gubas A, Dikic I. A guide to the regulation of selective autophagy receptors. The FEBS journal. 2022;289(1):75-89.

Wu W, Xu H, Wang Z, et al. PINK1-Parkin-mediated mitophagy protects mitochondrial integrity and prevents metabolic stress-induced endothelial injury. PloS one. 2015;10(7):e0132499.

Sekine S. PINK1 import regulation at a crossroad of mitochondrial fate: the molecular mechanisms of PINK1 import. The journal of biochemistry. 2020;167(3):217-24.

Xu M, Feng P, Yan J, et al. Mitochondrial quality control: a pathophysiological mechanism and potential therapeutic target for chronic obstructive pulmonary disease. Frontiers in Pharmacology. 2025;15:1474310.

Zhang J, Zhu Q, Wang J, et al. Mitochondrial dysfunction and quality control lie at the heart of subarachnoid hemorrhage. Neural Regeneration Research. 2024;19(4):825-32.

Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death & Differentiation. 2009;16(7):939-46.

Warren CF, Wong-Brown MW, Bowden NA. BCL-2 family isoforms in apoptosis and cancer. Cell death & disease. 2019;10(3):177.

Shamas-Din A, Brahmbhatt H, Leber B, et al. BH3-only proteins: Orchestrators of apoptosis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2011;1813(4):508-20.

Willis SN, Adams JM. Life in the balance: how BH3-only proteins induce apoptosis. Current opinion in cell biology. 2005;17(6):617-25.

Webster KA, Graham RM, Bishopric NH. BNip3 and signal-specific programmed death in the heart. Journal of molecular and cellular cardiology. 2005;38(1):35-45.

Li J, Agarwal E, Bertolini I, et al. The mitophagy effector FUNDC1 controls mitochondrial reprogramming and cellular plasticity in cancer cells. Science signaling. 2020;13(642):eaaz8240.

Shi D, Guo X, Ning Z, et al. Review of FUNDC1-mediated mitochondrial autophagy in Alzheimer’s disease. Frontiers in Aging Neuroscience. 2025;17:1544241.

Li G, Li J, Shao R, et al. FUNDC1: a promising mitophagy regulator at the mitochondria-associated membrane for cardiovascular diseases. Frontiers in cell and developmental biology. 2021;9:788634.

Otsu K, Murakawa T, Yamaguchi O. BCL2L13 is a mammalian homolog of the yeast mitophagy receptor Atg32. Autophagy. 2015;11(10):1932-3.

Murakawa T, Ito J, Rusu MC, et al. AMPK regulates Bcl2-L-13-mediated mitophagy induction for cardioprotection. Cell Reports. 2024;43(12).

Meng F, Sun N, Liu D, et al. BCL2L13: physiological and pathological meanings. Cellular and Molecular Life Sciences. 2021;78(6):2419-28.

Trachsel-Moncho L, Veroni C, Mathai BJ, et al. SNX10 functions as a modulator of piecemeal mitophagy and mitochondrial bioenergetics. Journal of Cell Biology. 2025;224(5):e202404009.

Ganley IG, Simonsen A. Diversity of mitophagy pathways at a glance. Journal of Cell Science. 2022;135(23):jcs259748.

Paradies G, Paradies V, Ruggiero FM, et al. Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells. 2019;8(7):728.

Chu CT, Ji J, Dagda RK, et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nature cell biology. 2013;15(10):1197-205.

Vaena S, Chakraborty P, Lee HG, et al. Aging-dependent mitochondrial dysfunction mediated by ceramide signaling inhibits antitumor T cell response. Cell reports. 2021;35(5).

Vos M, Dulovic-Mahlow M, Mandik F, et al. Ceramide accumulation induces mitophagy and impairs β-oxidation in PINK1 deficiency. Proceedings of the National Academy of Sciences. 2021;118(43):e2025347118.

Cui X, Zhou Z, Tu H, et al. Mitophagy in fibrotic diseases: molecular mechanisms and therapeutic applications. Frontiers in Physiology. 2024;15:1430230.

Verbeke J, De Bolle X, Arnould T. To eat or not to eat mitochondria? How do host cells cope with mitophagy upon bacterial infection? PLoS pathogens. 2023;19(7):e1011471.

Redmann M, Dodson M, Boyer-Guittaut M, et al. Mitophagy mechanisms and role in human diseases. The international journal of biochemistry & cell biology. 2014;53:127-33.

Denisenko TV, Gogvadze V, Zhivotovsky B. Mitophagy in carcinogenesis and cancer treatment. Discover Oncology. 2021;12(1):58.

Srinivasan S, Guha M, Kashina A, et al. Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2017;1858(8):602-14.

Chourasia AH, Macleod KF. Tumor suppressor functions of BNIP3 and mitophagy. Autophagy. 2015;11(10):1937-8.

Liu K, Lee J, Kim JY, et al. Mitophagy controls the activities of tumor suppressor p53 to regulate hepatic cancer stem cells. Molecular cell. 2017;68(2):281-92.

Sun X, Ye G, Mai Y, et al. Parkin exerts the tumor‐suppressive effect through targeting mitochondria. Medicinal research reviews. 2023;43(4):855-71.

Chourasia AH, Boland ML, Macleod KF. Mitophagy and cancer. Cancer & metabolism. 2015;3(1):4.

Bernardini JP, Lazarou M, Dewson G. Parkin and mitophagy in cancer. Oncogene. 2017;36(10):1315-27.

Kim H, Ze’ev AR. Parkin paves the path to antitumor immunity: Expanding Parkin’s role as a tumor suppressor. The Journal of Clinical Investigation. 2024;134(22).

Gorbunova AS, Yapryntseva MA, Denisenko TV, et al. BNIP3 in lung cancer: to kill or rescue?. Cancers. 2020;12(11):3390.

Wang S, Cheng H, Li M, et al. BNIP3-mediated mitophagy boosts the competitive growth of Lenvatinib-resistant cells via energy metabolism reprogramming in HCC. Cell Death & Disease. 2024;15(7):484.

Yu Q, Fu W, Fu Y, et al. BNIP3 as a potential biomarker for the identification of prognosis and diagnosis in solid tumours. Molecular cancer. 2023;22(1):143.

Li H, Zhang C, Zhang Q, et al. BNIP3 enhances pancreatic cancer cell migration and proliferation via modulating autophagy under hypoxia. Heliyon. 2022;8(10).

Zhu Y, Chen B, Yan J, et al. BNIP3 upregulation characterizes cancer cell subpopulation with increased fitness and proliferation. Frontiers in Oncology. 2022;12:923890.

Behera BP, Mishra SR, Patra S, et al. Molecular regulation of mitophagy signaling in tumor microenvironment and its targeting for cancer therapy. Cytokine & Growth Factor Reviews. 2025 Jan 17.

Humpton TJ, Alagesan B, DeNicola GM, et al. Oncogenic KRAS induces NIX-mediated mitophagy to promote pancreatic cancer. Cancer discovery. 2019;9(9):1268-87.

Jung J, Zhang Y, Celiku O, et al. Mitochondrial NIX promotes tumor survival in the hypoxic niche of glioblastoma. Cancer research. 2019;79(20):5218-32.

Tang L, Chen J, Wu Z, et al. FUNDC1 predicts Poor Prognosis and promotes Progression and Chemoresistance in Endometrial Carcinoma. Journal of Cancer. 2024;15(20):6490.

Luo X, Li M, Gong Y, et al. FUNDC1 drives cholangiocarcinoma progression via RAC1 interaction and ferroptosis suppression. International Journal of Biological Macromolecules. 2025:146087.

Wu L, Zhang D, Zhou L, et al. FUN14 domain-containing 1 promotes breast cancer proliferation and migration by activating calcium-NFATC1-BMI1 axis. EBioMedicine. 2019;41:384-94.

Li W, Li Y, Siraj S, et al. FUN14 Domain‐containing 1–mediated mitophagy suppresses hepatocarcinogenesis by inhibition of inflammasome activation in mice. Hepatology. 2019;69(2):604-21.

Fang EF, Hou Y, Lautrup S, et al. NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nature communications. 2019;10(1):5284.

Lin S, Wang Y, Zhang X, et al. HSP27 alleviates cardiac aging in mice via a mechanism involving antioxidation and mitophagy activation. Oxidative medicine and cellular longevity. 2016;2016(1):2586706.

Cen X, Zhang M, Zhou M, et al. Mitophagy regulates neurodegenerative diseases. Cells. 2021;10(8):1876.

Quinn PM, Moreira PI, Ambrósio AF, et al. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta neuropathologica communications. 2020;8(1):189.

Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85(2):257-73.

Kamp F, Exner N, Lutz AK, et al. Inhibition of mitochondrial fusion by α‐synuclein is rescued by PINK1, Parkin and DJ‐1. The EMBO journal. 2010;29(20):3571-89.

Koentjoro B, Park JS, Sue CM. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson’s disease. Scientific reports. 2017;7(1):44373.

Bingol B, Tea JS, Phu L, et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature. 2014;510(7505):370-5.

Miller S, Muqit MM. Therapeutic approaches to enhance PINK1/Parkin mediated mitophagy for the treatment of Parkinson’s disease. Neuroscience letters. 2019;705:7-13.

Fang EF, Hou Y, Palikaras K, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nature neuroscience. 2019;22(3):401-12.

Khalil B, El Fissi N, Aouane A, et al. PINK1-induced mitophagy promotes neuroprotection in Huntington’s disease. Cell death & disease. 2015;6(1):e1617-.

Yayınlanan

9 Şubat 2026

Lisans

Lisans