Ferroptosis

Yazarlar

Laika Kardana

Özet

Referanslar

Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cellular & molecular immunology. 2021 May;18(5):1106-21.

Das S, Shukla N, Singh SS, Kushwaha S, Shrivastava R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis. 2021 Oct;26(9):512-33.

Raj S, Jaiswal SK, DePamphilis ML. Cell death and the p53 enigma during mammalian embryonic development. Stem Cells. 2022 Mar 1;40(3):227-38.

Kist M, Vucic D. Cell death pathways: intricate connections and disease implications. The EMBO Journal. 2021 Mar 1;40(5):e106700.

Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer cell. 2003 Mar 1;3(3):285-96.

Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chemistry & biology. 2008 Mar 21;15(3):234-45.

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B. Ferroptosis: an iron-dependent form of nonapoptotic cell death. cell. 2012 May 25;149(5):1060-72.

Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015 Apr 2;520(7545):57-62.

Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nature reviews Molecular cell biology. 2021 Apr;22(4):266-82.

Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, Lei P. Ferroptosis: mechanisms and links with diseases. Signal transduction and targeted therapy. 2021 Feb 3;6(1):49.

Dixon SJ, Stockwell BR. The hallmarks of ferroptosis. Annual review of cancer biology. 2019 Mar 4;3(1):35-54.

Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, Li B. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. Journal of hematology & oncology. 2019 Mar 29;12(1):34.

Feng H, Schorpp K, Jin J, Yozwiak CE, Hoffstrom BG, Decker AM, Rajbhandari P, Stokes ME, Bender HG, Csuka JM, Upadhyayula PS. Transferrin receptor is a specific ferroptosis marker. Cell reports. 2020 Mar 10;30(10):3411-23.

Schiavi A, Salveridou E, Brinkmann V, Shaik A, Menzel R, Kalyanasundaram S, Nygård S, Nilsen H, Ventura N. Mitochondria hormesis delays aging and associated diseases in Caenorhabditis elegans impacting on key ferroptosis players. IScience. 2023 Apr 21;26(4).

Liao P, Wang W, Wang W, Kryczek I, Li X, Bian Y, Sell A, Wei S, Grove S, Johnson JK, Kennedy PD. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer cell. 2022 Apr 11;40(4):365-78.

Müller S, Sindikubwabo F, Cañeque T, Lafon A, Versini A, Lombard B, Loew D, Wu TD, Ginestier C, Charafe-Jauffret E, Durand A. CD44 regulates epigenetic plasticity by mediating iron endocytosis. Nature chemistry. 2020 Oct;12(10):929-38.

Wang Y, Zhang M, Bi R, Su Y, Quan F, Lin Y, Yue C, Cui X, Zhao Q, Liu S, Yang Y. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox biology. 2022 May 1;51:102262.

Schreiber R, Buchholz B, Kraus A, Schley G, Scholz J, Ousingsawat J, Kunzelmann K. Lipid peroxidation drives renal cyst growth in vitro through activation of TMEM16A. Journal of the American Society of Nephrology. 2019 Feb 1;30(2):228-42.

Maser RL, Vassmer D, Magenheimer BS, Calvet JP. Oxidant stress and reduced antioxidant enzyme protection in polycystic kidney disease. Journal of the American Society of Nephrology. 2002 Apr 1;13(4):991-9.

Zhou Z, Ye TJ, DeCaro E, Buehler B, Stahl Z, Bonavita G, Daniels M, You M. Intestinal SIRT1 deficiency protects mice from ethanol-induced liver injury by mitigating ferroptosis. The American Journal of Pathology. 2020 Jan 1;190(1):82-92.

Wang J, Zhu Q, Li R, Zhang J, Ye X, Li X. YAP1 protects against septic liver injury via ferroptosis resistance. Cell & Bioscience. 2022 Oct 1;12(1):163.

Tsurusaki S, Tsuchiya Y, Koumura T, Nakasone M, Sakamoto T, Matsuoka M, Imai H, Yuet-Yin Kok C, Okochi H, Nakano H, Miyajima A. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell death & disease. 2019 Jun 18;10(6):449.

Belaidi AA, Gunn AP, Wong BX, Ayton S, Appukuttan AT, Roberts BR, Duce JA, Bush AI. Marked age-related changes in brain iron homeostasis in amyloid protein precursor knockout mice. Neurotherapeutics. 2018 Oct 14;15(4):1055-62.

Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Marie EJ, Hondal RJ. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 2019 May 16;177(5):1262-79.

Granata S, Votrico V, Spadaccino F, Catalano V, Netti GS, Ranieri E, Stallone G, Zaza G. Oxidative stress and ischemia/reperfusion injury in kidney transplantation: focus on ferroptosis, mitophagy and new antioxidants. Antioxidants. 2022 Apr 12;11(4):769.

Yu X, Ma X, Lyu J, Jiang N, Lu Y, Liao Y, Wang K, Yu W. Ferroptosis involved in sevoflurane-aggravated young rats brain injury induced by liver transplantation. Neuroreport. 2022 Nov 2;33(16):705-13.

Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, Cheng Q. Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences. 2019 Feb 12;116(7):2672-80.

Eagle H. The specific amino acid requirements of a mammalian cell (strain L) in tissue culture.

Bannai S, Ishii T. Formation of sulfhydryl groups in the culture medium by human diploid fibroblasts. Journal of Cellular Physiology. 1980 Aug;104(2):215-23.

Tan S, Schubert D, Maher P. Oxytosis: a novel form of programmed cell death. Current topics in medicinal chemistry. 2001 Dec 1;1(6):497-506.

Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014 Jan 16;156(1):317-31.

Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends in cell biology. 2016 Mar 1;26(3):165-76.

S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, Mourão A. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019 Nov 28;575(7784):693-8.

Yu Y, Jiang L, Wang H, Shen Z, Cheng Q, Zhang P, Wang J, Wu Q, Fang X, Duan L, Wang S. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood, The Journal of the American Society of Hematology. 2020 Aug 6;136(6):726-39.

Nakamura T, Hipp C, Santos Dias Mourão A, Borggräfe J, Aldrovandi M, Henkelmann B, Wanninger J, Mishima E, Lytton E, Emler D, Proneth B. Phase separation of FSP1 promotes ferroptosis. Nature. 2023 Jul 13;619(7969):371-7.

Tao L, Yang X, Ge C, Zhang P, He W, Xu X, Li X, Chen W, Yu Y, Zhang H, Chen SD. Integrative clinical and preclinical studies identify FerroTerminator1 as a potent therapeutic drug for MASH. Cell Metabolism. 2024 Oct 1;36(10):2190-206.

Han X. Lipidomics for studying metabolism. Nature Reviews Endocrinology. 2016 Nov;12(11):668-79.

Zheng J, Conrad M. The metabolic underpinnings of ferroptosis. Cell metabolism. 2020 Dec 1;32(6):920-37.

Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell research. 2021 Feb;31(2):107-25.

Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis. The FEBS journal. 2022 Nov;289(22):7038-50.

Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, Prokisch H. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature chemical biology. 2017 Jan;13(1):91-8.

Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, Kapralov AA. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature chemical biology. 2017 Jan;13(1):81-90.

Yuan H, Li X, Zhang X, Kang R, Tang D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochemical and biophysical research communications. 2016 Sep 23;478(3):1338-43

Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, Superti-Furga G, Stockwell BR. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS chemical biology. 2015 Jul 17;10(7):1604-9.

Tesfay L, Paul BT, Konstorum A, Deng Z, Cox AO, Lee J, Furdui CM, Hegde P, Torti FM, Torti SV. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer research. 2019 Oct 15;79(20):5355-66.

Magtanong L, Ko PJ, To M, Cao JY, Forcina GC, Tarangelo A, Ward CC, Cho K, Patti GJ, Nomura DK, Olzmann JA. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell chemical biology. 2019 Mar 21;26(3):420-32.

Zou Y, Henry WS, Ricq EL, Graham ET, Phadnis VV, Maretich P, Paradkar S, Boehnke N, Deik AA, Reinhardt F, Eaton JK. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature. 2020 Sep 24;585(7826):603-8.

Bai Y, Meng L, Han L, Jia Y, Zhao Y, Gao H, Kang R, Wang X, Tang D, Dai E. Lipid storage and lipophagy regulates ferroptosis. Biochemical and biophysical research communications. 2019 Jan 22;508(4):997-1003.

Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Molecular cell. 2015 Jul 16;59(2):298-308.

Song X, Liu J, Kuang F, Chen X, Zeh HJ, Kang R, Kroemer G, Xie Y, Tang D. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Reports. 2021 Feb 23;34(8).

Lin Z, Liu J, Kang R, Yang M, Tang D. Lipid metabolism in ferroptosis. Advanced Biology. 2021 Aug;5(8):2100396.

Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Song S, Tavana O, Gu W. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nature cell biology. 2019 May;21(5):579-91.

Wenzel SE, Tyurina YY, Zhao J, Croix CM, Dar HH, Mao G, Tyurin VA, Anthonymuthu TS, Kapralov AA, Amoscato AA, Mikulska-Ruminska K. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell. 2017 Oct 19;171(3):628-41.

Kuang F, Liu J, Xie Y, Tang D, Kang R. MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell chemical biology. 2021 Jun 17;28(6):765-75.

Nakamura T, Naguro I, Ichijo H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochimica et Biophysica Acta (BBA)-General Subjects. 2019 Sep 1;1863(9):1398-409.

Toyokuni S. Iron and carcinogenesis: from Fenton reaction to target genes. Redox Report. 2002 Aug 1;7(4):189-97.

Chen X, Yu C, Kang R, Tang D. Iron metabolism in ferroptosis. Frontiers in cell and developmental biology. 2020 Oct 7;8:590226.

Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, Wang H, Cao L, Tang D. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 2015 Nov;34(45):5617-25.

Wang Y, Liu Y, Liu J, Kang R, Tang D. NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochemical and biophysical research communications. 2020 Oct 22;531(4):581-7.

Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K, Possemato R. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature. 2017 Nov 30;551(7682):639-43.

Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh III HJ, Kang R, Tang D. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016 Aug 2;12(8):1425-8.

Ma S, Henson ES, Chen Y, Gibson SB. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell death & disease. 2016 Jul;7(7):e2307-.

Li L, Hao Y, Zhao Y, Wang H, Zhao X, Jiang Y, Gao F. Ferroptosis is associated with oxygen-glucose deprivation/reoxygenation-induced Sertoli cell death. International journal of molecular medicine. 2018 May;41(5):3051-62.

Li J, Liu J, Xu Y, Wu R, Chen X, Song X, Zeh H, Kang R, Klionsky DJ, Wang X, Tang D. Tumor heterogeneity in autophagy-dependent ferroptosis. Autophagy. 2021 Nov 2;17(11):3361-74.

Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, Baer CE, Dixon SJ, Mercurio AM. Prominin2 drives ferroptosis resistance by stimulating iron export. Developmental cell. 2019 Dec 2;51(5):575-86.

Liu J, Song X, Kuang F, Zhang Q, Xie Y, Kang R, Kroemer G, Tang D. NUPR1 is a critical repressor of ferroptosis. Nature communications. 2021 Jan 28;12(1):647.

Yuan H, Li X, Zhang X, Kang R, Tang D. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochemical and biophysical research communications. 2016 Sep 16;478(2):838-44.

Kim EH, Shin D, Lee J, Jung AR, Roh JL. CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer letters. 2018 Sep 28;432:180-90.

Wise CE, Grant JL, Amaya JA, Ratigan SC, Hsieh CH, Manley OM, Makris TM. Divergent mechanisms of iron-containing enzymes for hydrocarbon biosynthesis. JBIC Journal of Biological Inorganic Chemistry. 2017 Apr;22(2):221-35.

Biz A, Mahadevan R. Overcoming challenges in expressing iron–sulfur enzymes in yeast. Trends in Biotechnology. 2021 Jul 1;39(7):665-77.

Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG, Gao LC. System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Frontiers in pharmacology. 2022 Aug 29;13:910292.

Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, Wang G. Ferroptosis: past, present and future. Cell death & disease. 2020 Feb 3;11(2):88.

Liang D, Feng Y, Zandkarimi F, Wang H, Zhang Z, Kim J, Cai Y, Gu W, Stockwell BR, Jiang X. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell. 2023 Jun 22;186(13):2748-64.

Liu Y, Wan Y, Jiang Y, Zhang L, Cheng W. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2023 May 1;1878(3):188890.

Chen X, Yu C, Kang R, Kroemer G, Tang D. Cellular degradation systems in ferroptosis. Cell Death & Differentiation. 2021 Apr;28(4):1135-48.

Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, Bassik MC. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019 Nov 28;575(7784):688-92.

Kraft VA, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, Brandner S. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS central science. 2019 Dec 27;6(1):41-53.

Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, Bassik MC. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019 Nov 28;575(7784):688-92.

Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, Mourão A. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019 Nov 28;575(7784):693-8.

Dai E, Zhang W, Cong D, Kang R, Wang J, Tang D. AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochemical and biophysical research communications. 2020 Mar 19;523(4):966-71.

Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, Brown LM, Valenzuela CA, Wolpaw AJ, Stockwell BR. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nature chemical biology. 2016 Jul;12(7):497-503.

Punziano C, Trombetti S, Cesaro E, Grosso M, Faraonio R. Antioxidant systems as modulators of ferroptosis: focus on transcription factors. Antioxidants. 2024 Feb 28;13(3):298.

Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Freitas FP, Seibt T, Mehr L. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 2018 Jan 25;172(3):409-22.

Holstein SA, Hohl RJ. Isoprenoids: remarkable diversity of form and function. Lipids. 2004 Apr;39(4):293-309.

Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, Viswanathan SR. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017 Jul 27;547(7664):453-7.

Angeli JP, Conrad M. Selenium and GPX4, a vital symbiosis. Free Radical Biology and Medicine. 2018 Nov 1;127:153-9.

Warner GJ, Berry MJ, Moustafa ME, Carlson BA, Hatfield DL, Faust JR. Inhibition of selenoprotein synthesis by selenocysteine tRNA [Ser] Sec lacking isopentenyladenosine. Journal of Biological Chemistry. 2000 Sep 8;275(36):28110-9.

Kraft VA, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, Brandner S. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS central science. 2019 Dec 27;6(1):41-53.

Fang W, Xie S, Deng W. Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell biology and toxicology. 2024 Mar 21;40(1):17.

Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, Molina H, Garcia-Bermudez J, Pratt DA, Birsoy K. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nature chemical biology. 2020 Dec;16(12):1351-60.

Garcia-Bermudez J, Baudrier L, Bayraktar EC, Shen Y, La K, Guarecuco R, Yucel B, Fiore D, Tavora B, Freinkman E, Chan SH. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature. 2019 Mar 7;567(7746):118-22.

Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, Poyurovsky MV. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 2021 May 27;593(7860):586-90.

Wu S, Mao C, Kondiparthi L, Poyurovsky MV, Olszewski K, Gan B. A ferroptosis defense mechanism mediated by glycerol-3-phosphate dehydrogenase 2 in mitochondria. Proceedings of the National Academy of Sciences. 2022 Jun 28;119(26):e2121987119.

Vasan K, Werner M, Chandel NS. Mitochondrial metabolism as a target for cancer therapy. Cell metabolism. 2020 Sep 1;32(3):341-52.

Mráček T, Drahota Z, Houštěk J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2013 Mar 1;1827(3):401-10.

Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy. 2021 Sep 2;17(9):2054-81.

Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network. Free Radical Biology and Medicine. 2019 Mar 1;133:162-8.

Ma S, Sun L, Wu W, Wu J, Sun Z, Ren J. USP22 protects against myocardial ischemia–reperfusion injury via the SIRT1-p53/SLC7A11–dependent inhibition of ferroptosis–induced cardiomyocyte death. Frontiers in Physiology. 2020 Oct 21;11:551318.

Ou Y, Wang SJ, Li D, Chu B, Gu W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proceedings of the National Academy of Sciences. 2016 Nov 1;113(44):E6806-12.

Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y, Sugano S. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proceedings of the National Academy of Sciences. 2010 Apr 20;107(16):7461-6.

Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, Zhong M, Yuan H, Zhang L, Billiar TR, Lotze MT. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell reports. 2017 Aug 15;20(7):1692-704.

Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, Attardi LD, Dixon SJ. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell reports. 2018 Jan 16;22(3):569-75.

Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D. Activation of the p62‐Keap1‐NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016 Jan;63(1):173-84.

Shin D, Kim EH, Lee J, Roh JL. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radical Biology and Medicine. 2018 Dec 1;129:454-62.

Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M, Savaskan N. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis. 2017 Aug;6(8):e371-.

Chen D, Tavana O, Chu B, Erber L, Chen Y, Baer R, Gu W. NRF2 is a major target of ARF in p53-independent tumor suppression. Molecular cell. 2017 Oct 5;68(1):224-32.

Wu J, Huang Y, Zhou X, Xiang Z, Yang Z, Meng D, Wu D, Zhang J, Yang J. ATF3 and its emerging role in atherosclerosis: a narrative review. Cardiovascular Diagnosis and Therapy. 2022 Dec;12(6):926.

Ku HC, Cheng CF. Master regulator activating transcription factor 3 (ATF3) in metabolic homeostasis and cancer. Frontiers in Endocrinology. 2020 Aug 14;11:556.

Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding HF, Zhang J, Wang H, Chen X, Yan C. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc–. Cell Death & Differentiation. 2020 Feb;27(2):662-75.

Li Y, Yan J, Zhao Q, Zhang Y, Zhang Y. ATF3 promotes ferroptosis in sorafenib-induced cardiotoxicity by suppressing Slc7a11 expression. Frontiers in pharmacology. 2022 Sep 23;13:904314.

Wang Z, Li C, Zhang Z, Lu S, Wang X, Liang Q, Zhu X, Pan C, Wang Q, Ji Z, Wang Y. SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via induction of NAD+ depletion-dependent activation of ATF3. Redox Biology. 2024 Feb 1;69:103030.

Ameri K, Harris AL. Activating transcription factor 4. The international journal of biochemistry & cell biology. 2008 Jan 1;40(1):14-21.

Zhu S, Zhang Q, Sun X, Zeh III HJ, Lotze MT, Kang R, Tang D. HSPA5 regulates ferroptotic cell death in cancer cells. Cancer research. 2017 Apr 15;77(8):2064-77.

Gao R, Kalathur RK, Coto‐Llerena M, Ercan C, Buechel D, Shuang S, Piscuoglio S, Dill MT, Camargo FD, Christofori G, Tang F. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO molecular medicine. 2021 Dec 7;13(12):e14351

He F, Zhang P, Liu J, Wang R, Kaufman RJ, Yaden BC, Karin M. ATF4 suppresses hepatocarcinogenesis by inducing SLC7A11 (xCT) to block stress-related ferroptosis. Journal of hepatology. 2023 Aug 1;79(2):362-77.

Long H, Zhu W, Wei L, Zhao J. Iron homeostasis imbalance and ferroptosis in brain diseases. MedComm. 2023 Aug;4(4):e298.

Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal transduction and targeted therapy. 2024 Oct 14;9(1):271.

Lin KJ, Chen SD, Lin KL, Liou CW, Lan MY, Chuang YC, Wang PW, Lee JJ, Wang FS, Lin HY, Lin TK. Iron brain menace: the involvement of ferroptosis in Parkinson disease. Cells. 2022 Nov 29;11(23):3829.

Ndayisaba A, Kaindlstorfer C, Wenning GK. Iron in neurodegeneration–cause or consequence?. Frontiers in neuroscience. 2019 Mar 1;13:180.

Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, Boonpraman N, Yi SS, Yoo ID, Moon JS. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer's diseases. Redox biology. 2021 May 1;41:101947.

Ayton S, Wang Y, Diouf I, Schneider JA, Brockman J, Morris MC, Bush AI. Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Molecular psychiatry. 2020 Nov;25(11):2932-41.

Raven EP, Lu PH, Tishler TA, Heydari P, Bartzokis G. Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer's disease detected in vivo with magnetic resonance imaging. Journal of Alzheimer’s Disease. 2013 Aug 20;37(1):127-36.

Lane DJ, Ayton S, Bush AI. Iron and Alzheimer’s disease: an update on emerging mechanisms. Journal of Alzheimer’s Disease. 2018 Jun 12;64(s1):S379-95.

Hambright WS, Fonseca RS, Chen L, Na R, Ran Q. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox biology. 2017 Aug 1;12:8-17.

Faucheux BA, Martin ME, Beaumont C, Hunot S, Hauw JJ, Agid Y, Hirsch EC. Lack of up‐regulation of ferritin is associated with sustained iron regulatory protein‐1 binding activity in the substantia nigra of patients with Parkinson's disease. Journal of neurochemistry. 2002 Oct;83(2):320-30.

Bi M, Du X, Jiao Q, Liu Z, Jiang H. α-Synuclein regulates iron homeostasis via preventing parkin-mediated DMT1 ubiquitylation in Parkinson’s disease models. ACS Chemical Neuroscience. 2020 May 7;11(11):1682-91.

Do Van B, Gouel F, Jonneaux A, Timmerman K, Gelé P, Pétrault M, Bastide M, Laloux C, Moreau C, Bordet R, Devos D. Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC. Neurobiology of disease. 2016 Oct 1;94:169-78.

Agrawal S, Fox J, Thyagarajan B, Fox JH. Brain mitochondrial iron accumulates in Huntington's disease, mediates mitochondrial dysfunction, and can be removed pharmacologically. Free Radical Biology and Medicine. 2018 May 20;120:317-29.

Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K, Rosenberg PA, Lo DC, Weinberg JM, Linkermann A, Stockwell BR. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. Journal of the american chemical society. 2014 Mar 26;136(12):4551-6.

Klepac N, Relja M, Klepac R, Hećimović S, Babić T, Trkulja V. Oxidative stress parameters in plasma of Huntington's disease patients, asymptomatic Huntington’s disease gene carriers and healthy subjects: A cross-sectional study. Journal of neurology. 2007 Dec;254(12):1676-83.

Kwan JY, Jeong SY, Van Gelderen P, Deng HX, Quezado MM, Danielian LE, Butman JA, Chen L, Bayat E, Russell J, Siddique T. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PloS one. 2012 Apr 17;7(4):e35241.

Johnson WM, Wilson-Delfosse AL, Mieyal JJ. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients. 2012 Oct 9;4(10):1399-440.

Codazzi F, Hu A, Rai M, Donatello S, Salerno Scarzella F, Mangiameli E, Pelizzoni I, Grohovaz F, Pandolfo M. Friedreich ataxia-induced pluripotent stem cell-derived neurons show a cellular phenotype that is corrected by a benzamide HDAC inhibitor. Human molecular genetics. 2016 Nov 15;25(22):4847-55.

Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z. The mechanism of ferroptosis and its related diseases. Molecular biomedicine. 2023 Oct 16;4(1):33.

Amini M, Zayeri F, Salehi M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: results from global burden of disease study 2017. BMC public health. 2021 Feb 25;21(1):401.

Li N, Jiang W, Wang W, Xiong R, Wu X, Geng Q. Ferroptosis and its emerging roles in cardiovascular diseases. Pharmacological Research. 2021 Apr 1;166:105466.

Baba Y, Higa JK, Shimada BK, Horiuchi KM, Suhara T, Kobayashi M, Woo JD, Aoyagi H, Marh KS, Kitaoka H, Matsui T. Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. American Journal of Physiology-Heart and Circulatory Physiology. 2018 Mar 1;314(3):H659-68.

Sung HK, Song E, Jahng JW, Pantopoulos K, Sweeney G. Iron induces insulin resistance in cardiomyocytes via regulation of oxidative stress. Scientific reports. 2019 Mar 15;9(1):4668.

Wang K, Chen XZ, Wang YH, Cheng XL, Zhao Y, Zhou LY, Wang K. Emerging roles of ferroptosis in cardiovascular diseases. Cell death discovery. 2022 Sep 20;8(1):394.

Müller T, Dewitz C, Schmitz J, Schröder AS, Bräsen JH, Stockwell BR, Murphy JM, Kunzendorf U, Krautwald S. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cellular and Molecular Life Sciences. 2017 Oct;74(19):3631-45.

Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature cell biology. 2014 Dec;16(12):1180-91.

Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature cell biology. 2014 Nov 17;16(12):1180.

Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, Prokai A, Zuchtriegel G, Krombach F, Welz PS, Weinlich R. Synchronized renal tubular cell death involves ferroptosis. Proceedings of the National Academy of Sciences. 2014 Nov 25;111(47):16836-41.

Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Niño MD, Ortega MR, Egido J, Linkermann A, Ortiz A, Sanz AB. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid–induced AKI. Journal of the American Society of Nephrology. 2017 Jan 1;28(1):218-29.

Stoppe C, Averdunk L, Goetzenich A, Soppert J, Marlier A, Kraemer S, Vieten J, Coburn M, Kowark A, Kim BS, Marx G. The protective role of macrophage migration inhibitory factor in acute kidney injury after cardiac surgery. Science translational medicine. 2018 May 16;10(441):eaan4886.

Guo J, Wang R, Min F. Ginsenoside Rg1 ameliorates sepsis-induced acute kidney injury by inhibiting ferroptosis in renal tubular epithelial cells. Journal of Leukocyte Biology. 2022 Nov;112(5):1065-77.

Qiongyue Z, Xin Y, Meng P, Sulin M, Yanlin W, Xinyi L, Xuemin S. Post-treatment with irisin attenuates acute kidney injury in sepsis mice through anti-ferroptosis via the SIRT1/Nrf2 pathway. Frontiers in Pharmacology. 2022 Mar 17;13:857067.

Qiu W, An S, Wang T, Li J, Yu B, Zeng Z, Chen Z, Lin B, Lin X, Gao Y. Melatonin suppresses ferroptosis via activation of the Nrf2/HO-1 signaling pathway in the mouse model of sepsis-induced acute kidney injury. International immunopharmacology. 2022 Nov 1;112:109162.

Zhou Z, Zhang H. CHAC1 exacerbates LPS-induced ferroptosis and apoptosis in HK-2 cells by promoting oxidative stress. Allergologia et Immunopathologia. 2023 Mar 1;51(2):99-110.

Yao W, Liao H, Pang M, Pan L, Guan Y, Huang X, Hei Z, Luo C, Ge M. Inhibition of the NADPH oxidase pathway reduces ferroptosis during septic renal injury in diabetic mice. Oxidative medicine and cellular longevity. 2022;2022(1):1193734.

Hanahan D. Hallmarks of cancer: new dimensions. Cancer discovery. 2022 Jan 1;12(1):31-46.

Zhang W, Liu Y, Liao Y, Zhu C, Zou Z. GPX4, ferroptosis, and diseases. Biomedicine & Pharmacotherapy. 2024 May 1;174:116512.

Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, Zhong M, Yuan H, Zhang L, Billiar TR, Lotze MT. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell reports. 2017 Aug 15;20(7):1692-704.

Lei G, Mao C, Yan Y, Zhuang L, Gan B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein & cell. 2021 Nov;12(11):836-57.

Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience. 2015 May 2;2(5):517.

Yamaguchi Y, Kasukabe T, Kumakura S. Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. International journal of oncology. 2018 Jan 31;52(3):1011-22.

Hao S, Yu J, He W, Huang Q, Zhao Y, Liang B, Zhang S, Wen Z, Dong S, Rao J, Liao W. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia. 2017 Dec 1;19(12):1022-32.

Hasegawa M, Takahashi H, Rajabi H, Alam M, Suzuki Y, Yin L, Tagde A, Maeda T, Hiraki M, Sukhatme VP, Kufe D. Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget. 2016 Feb 22;7(11):11756.

Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K, Possemato R. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature. 2017 Nov 30;551(7682):639-43.

Basuli D, Tesfay L, Deng Z, Paul B, Yamamoto Y, Ning G, Xian W, McKeon F, Lynch M, Crum CP, Hegde P. Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene. 2017 Jul;36(29):4089-99.

Luo M, Wu L, Zhang K, Wang H, Zhang T, Gutierrez L, O’Connell D, Zhang P, Li Y, Gao T, Ren W. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death & Differentiation. 2018 Aug;25(8):1457-72.

Kazan HH, Urfali-Mamatoglu C, Gunduz U. Iron metabolism and drug resistance in cancer. Biometals. 2017 Oct;30(5):629-41.

Kazan HH, Urfali‐Mamatoglu C, Yalcin GD, Bulut O, Sezer A, Banerjee S, Gunduz U. 15‐LOX‐1 has diverse roles in the resensitization of resistant cancer cell lines to doxorubicin. Journal of cellular physiology. 2020 May;235(5):4965-78.

Yayınlanan

9 Şubat 2026

Lisans

Lisans