Cuproptosis: Mechanisms of Copper-Induced Cell Death
Özet
Apoptosis is a highly regulated and evolutionarily conserved form of programmed cell death that is essential for development, tissue homeostasis, and organismal defense. By enabling the orderly elimination of damaged, unnecessary, or potentially harmful cells without provoking inflammation, apoptosis maintains physiological balance in multicellular organisms. This process is executed through distinct yet interconnected molecular pathways, primarily the intrinsic (mitochondrial) and extrinsic (death receptor–mediated) pathways, both of which converge on the activation of caspases, the central executioners of apoptotic cell death. Mitochondria play a pivotal role in integrating cellular stress signals and determining cell fate through mitochondrial outer membrane permeabilization and the release of apoptogenic factors. Tight regulation of apoptosis is achieved through multiple control layers, including BCL-2 family proteins, inhibitor of apoptosis proteins, tumor suppressors such as p53, and survival signaling pathways. Dysregulation of apoptotic mechanisms contributes to the pathogenesis of numerous diseases, including cancer, autoimmune disorders, neurodegenerative diseases, and viral infections. This chapter provides a comprehensive overview of the molecular machinery, regulatory networks, and biological significance of apoptosis, highlighting its critical role in health and disease and its relevance as a therapeutic target.
Referanslar
Galluzzi, L., et al. (2018). Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death & Differentiation. 2018; 25(3):486–541.
Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., & Golub, T. R. (2022). Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 375(6586), 1254-1261.
Lutsenko, S. (2021). Copper trafficking to the secretory pathway. Metallomics, 2016,8, 840-852
Gupte, A., & Mumper, R. J. (2009). Elevated copper and oxidative stress in cancer cells. Cancer Treatment Reviews. Antı-Tumour Treatment Volume 35, Issue 1p32-46F
Cobine, P. A., & Brady, D. C. (2022). Cuproptosis: Cellular and molecular mechanisms. Mol Cell. 2022 May 19;82(10):1786-1787.
Li L, Zhou H, Zhang C. Cuproptosis in cancer: biological implications and therapeutic opportunities.Cell Mol Biol Lett. 2024 Jun 25;29(1):91. doi: 10.1186/s11658-024-00608-3.
Kahlson MA, Dixon SJ. Copper-induced cell death.Science. 2022 Mar 17;375(6586):1231-1232.
Linder, M. C. (2016). Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics, 8(9), 887-905.
Gaetke, L. M., Chow-Johnson, H. S., & Chow, C. K. (2014). Copper: toxicological relevance and mechanisms. Archives of Toxicology, 88(11), 1929-1938.
Nose, Y., Rees, E. M., & Thiele, D. J. (2006). Structure of the Ctr1 copper trans'PORE'ter reveals novel architecture. Trends in Biochemical Sciences, 31(11), 604-607.
Ohgami, R. S., Campagna, D. R., McDonald, A., & Fleming, M. D. (2006). The Steap proteins are metalloreductases. Blood, 108(4), 1388-1394.
Guo, Y., Smith, K., Lee, J., Thiele, D. J., & Petris, M. J. (2004). Identification of methionine-rich clusters that regulate copper-stimulated endocytosis of the human Ctr1 copper transporter. Journal of Biological Chemistry, 279(17), 17428-17433.
Hamza, I., Prohaska, J., & Gitlin, J. D. (2003). Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. Proceedings of the National Academy of Sciences, 100(3), 1215-1220.
Culotta, V. C., Yang, M., & O'Halloran, T. V. (2006). Activation of superoxide dismutases: putting the metal to the pedal. Biochimica et Biophysica Acta (BBA)- Molecular Cell Research, 1763(7), 747-758.
Horng, Y. C., Leary, S. C., Cobine, P. A., Young, F. B., George, G. N., Shoubridge, E. A., & Winge, D. R. (2004). Human Sco1 and Sco2 function as copper-binding proteins. Journal of Biological Chemistry, 279(33), 35334-35340.
Lutsenko, S., Barnes, N. L., Bartee, M. Y., & Dmitriev, O. Y. (2007). Function and regulation of human copper-transporting ATPases. Physiological Reviews, 87(3), 1011-1046.
Tümer, Z., & Møller, L. B. (2010). Menkes disease. European Journal of Human Genetics, 18(5), 511–518.
Lutsenko, S. (2016). Copper trafficking to the secretory pathway. Metallomics, 8(9), 840–852.
Petris, M. J., et al. (1996). Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. The EMBO Journal, 15(22), 6084–6095.
Hellman, N. E., & Gitlin, J. D. (2002). Ceruloplasmin metabolism and function. Annual Review of Nutrition, 22, 439–458.
Polishchuk, R. S., & Polishchuk, E. V. (2016). From and to the Golgi–the discovery and history of the ATP7B transporter. Histochemistry and Cell Biology, 145(6), 685–690.
Lutsenko, S. (2021). Copper trafficking to the secretory pathway. Metallomics, 13(8), mfab039.
Lutsenko S. Mammalian copper homeostasis: physiological roles and mechanisms. Physiol Rev. 2024;104(1):79-147.
Mi Y, Wang C, Li J, et al. Elucidating cuproptosis-related gene SLC31A1 diagnostic and prognostic value in cancers. Front Genet. 2023;14:1107002.
Wang H, Zhang Y, Li H, et al. Regulatory roles of copper metabolism and cuproptosis in cancer. Front Oncol. 2023;13:1123420.
Zhang Z, Zeng W, Chen X, et al. Unveiling cuproptosis: Mechanistic insights, roles, and therapeutic potential. Pharmacol Res. 2024;197:106302.
Ge, E. J., Bush, A. I., Casini, A., Cobine, P. A., Cross, J. R., DeNicola, G. M., & Chang, C. J. (2022). Connecting copper and cancer: from transition metal signalling to metalloplasia. Nature Reviews Cancer, 22(2), 102-113.
Xiao, T., Chen, L., & Huang, Z. (2023). The mitochondrial gatekeeper: membrane potential in copper homeostasis and cuproptosis. Cell Death Discovery, 9(1), 228.
Cheng YC, Hung IL, Liao YN, Hu WL, Hung YC. Salvia miltior-rhiza protects endothelial dysfunction against mitochondrial oxida-tive stress. Life (Basel, Switzerland) 2021;11(11):1257.
Rakshit A, Khatua K, Shanbhag V, Comba P, Datta A. Cu(2+) selectivechelators relieve copper-induced oxidative stress in vivo. Chem Sci2018;9(41):7916–30.
Boyd SD, Ullrich MS, Skopp A, Winkler DD. Copper sources for Sod1activation. Antioxidants (Basel, Switzerland) 2020;9(6):500.
Lelièvre P, Sancey L, Coll JL, Deniaud A, Busser B. The multifacetedroles of copper in cancer: a trace metal element with dysregu-lated metabolism, but also a target or a bullet for therapy. Cancers2020;12(12):3594.
Liu H, Guo H, Jian Z, Cui H, Fang J, Zuo Z, et al. Copper inducesoxidative stress and apoptosis in the mouse liver. Oxid Med CellLongev 020;2020:1359164.
34.. Fan Y, Cheng Z, Mao L, Xu G, Li N, Zhang M, et al. PINK1/TAX1BP1directed mitophagy attenuates vascular endothelial injury induced by copperoxide nanoparticles. JNanobiotechnol 2022;20(1):149.
Kang Z, Qiao N, Liu G, Chen H, Tang Z, Li Y. Copper-induced apopto-sis and autophagy through oxidative stress-mediated mitochondrialdysfunction in male germ cells. Toxicol Vitro 2019;61:104639.
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apop-tosis: an intricate game of cell death. Cell Mol Immunol 2021;18(5):1106–21.
Juan CA, PérezdelaLastra JM, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role inbiological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci 2021;22(9):4642.
Rowland EA, Snowden CK, Cristea IM. Protein lipoylation: an evolu-tionarily conserved metabolic regulator of health and disease. Curr Opin Chem Biol 2018;42:76–85.
Brancaccio D, Gallo A, Piccioli M, Novellino E, Ciofi-Baffoni S, Banci L. [4Fe-4S] Cluster assembly in mitochondria and its impairment by copper. JAmer Chem Soc 2017;139(2):719–30.