Polikarbonat Sera Örtü Malzemelerinin Tarımsal Üretimdeki Önemi ve Mekanik Performansı
Özet
Referanslar
de Paiva, C. S., de Assis, F. S., Monteiro, S. N., Candido, V. S., Ferreira, C. A. M., & Rios da Silva, A. C. (2020, November). Study of Mechanical Behavior of Polycarbonate after Thermal Degradation. In Materials Science Forum (Vol. 1012, pp. 94-99). Trans Tech Publications Ltd.
Kabay, T. (2025). Effect of Greenhouses on Vegetable Production. Ejons International Journal on Mathematic, Engineering and Natural Sciences, 9(1), 57–63. https://doi.org/10.5281/zenodo.15054071
Tezcan, N.Y. (2024). Seralarda İklimlendirme ve Sürdürülebilirlik. In Biyosistem Mühendisliği VI (pp. 103–118). Akademisyen Kitabevi.
TÜİK 2024. TÜİK Veri Portalı Niteliklerine göre örtü altı tarım alanları, 1995-2024. (7/11/2025 tarihinde https://data.tuik.gov.tr/Bulten/DownloadIstatistikselTablo?p=QbcENFM42DS13SwZBSxzH1y6dZquDM25jgGNbardt6Vk/cJHx0PFM3duxJLA2OGu adresinden ulaşılmıştır.)
Frigione, M. (2022). Assessment of the Ageing and Durability of Polymers. Polymers, 14(10), 1934.
Petrov, A., Salopek Čubrić, I., & Čubrić, G. (2024). Influence of aging on the physical properties of knitted polymeric materials. Polymers, 16(4), 513.
Erdem S. The comparatıve analysıs of polimeric sheets used in roofs. Thesis M.Sc., İstanbul Technical University, Institute of Science and Technology İstanbul,Türkiye, 2008. 171 p.
Fuinaa S., Marano G.C. and Scarascia-Mugnozza G. Polycarbonate laminates thermo-mechanical
behaviour under differentoperating temperatures. Polymer Testing; 2019. 76: 344-349.
https://doi.org/10.1016/j.polymertesting.2019.03.031
Kim, H. K., Lee, S. Y., Kwon, J. K., & Kim, Y. H. (2022). Evaluating the effect of cover materials on greenhouse microclimates and thermal performance. Agronomy, 12(1), 143.
Kim Na-im, Lee Jeong-moo, Lee Su-ha, & Wi Jeong-uk. (2024). Analysis of accelerated degradation behavior of polycarbonate materials under various temperature and humidity conditions. Journal of the Korean Society of Mechanical Engineers, Vol. A, 48(8), 565-571.
Frenzel, O., Westphalen, T., Kaminski, K., Kluge, S., Bücker, M., & Piechotta, C. (2025). Evaluation and Validation of an Accelerated Weathering Procedure to Characterise the Release of Bisphenol A from Polycarbonate Under Exposure to Simulated Environmental Conditions. Applied Sciences, 15(19), 10361.
İska Sera, “Polycarbonate Greenhouses with İska Sera: A Durable and Efficient Agricultural Solution.” Blog, 2025.
Korkmaz, C., & Tezcan, N. Y. (2025). The temporal variation of some physical and mechanical properties of different polycarbonate greenhouse covering materials and the detection of aging using thermal imaging. Infrared Physics & Technology, 105979.
Meyers M.A. and Chawla K.K. Mechanical behavior of materials. Cambridge University Press; 2009. 2 edition, 882 p.
Ishida, T., & Kitagaki, R. (2021). Mathematical modeling of outdoor natural weathering of Polycarbonate: Regional characteristics of degradation behaviors. Polymers, 13(5), 820.
Papadakis G., Briassoulis D., Scarascia Mugnozza G., Vox G., Feuilloley P. et al. Radiometric and thermal properties of, and testing methods for, greenhouse covering materials. Journal of Agricultural Engineering Research; 2000. 77 (1): 7-38. https://doi.org/10.1006/jaer.2000.0525.
Mehr Y.M., Driel W.D.V., Jansen K.M.B., Deeben P. and Zhang G.Q. Lifetime assessment of bisphenol-a polycarbonate (BPA-PC) plastic lens, used in LED-based products. Microelectronics 629 Reliability; 2014. 54 (1): 138-142. https://doi.org/10.1016/j.microrel.2013.09.009.
Gandhi K., Hein C.L., Heerbeek R.V. and Pickett J.E. Acceleration parameters for polycarbonate under blue LED photo-thermal aging conditions. Polymer Degradation and Stability; 2019. 164: 69-74. https://doi.org/10.1016/j.polymdegradstab.2019.04.001
Shivanna, S., Subramani, N. K., Nagaraj, S. K., Mutturaj, J. R. B., & Basavaraj, S. (2019). Patina-green coloured light emitting polycarbonate films: A synergistic extraction of improved UV endurance and considerate spectral down-conversion. Journal of Luminescence, 210, 276-284.
Montaudo, G., Carroccio, S. and Puglisi, C. 2002. Thermal and themoxidative degradation processes in poly (bisphenol a carbonate). Journal of Analytical and Applied Pyrolysis, 64 (2): 229-247.
Jiang, L., Zhou, M., Ding, Y., Zhou, Y. and Dan, Y. 2018. Aging induced ductile-brittle -ductile transition in bisphenol a polycarbonate. Journal of Polymer Research, 25: 39.
Akbay, İ.K. 2014. Polikarbonat’ın atmosferik ve sulu ortamlarda uv ışınları ile bozunumu. Yüksek lisans tezi, Mersin Üniversitesi, Mersin, 104s.
Kwon, J.K., Khoshimkhujaev, B., Lee, J.H., Yu, I.H., Park, K.S. and Choi, H.G. 2017. Growth and yield of tomato and cucumber plants in polycarbonate or glass greenhouses. Hortic. Sci. Technol., 35: 79-87.
Ahmadi, L. and Tsao, R. 2018. The effect of greenhouse covering materials on phytochemical composition and antioxidant capacity of tomato cultivars. J Sci Food Agric, 98: 4427-4435.
Korkmaz C. Determination of The Effect of Different Polycarbonate Greenhouse Cover Materials on Environmental Microclimate and Plant Development with Thermal Cameras. PhD Thesis, Akdeniz University, Antalya, Türkiye, 2021. 179 p.
Tao, W. A. N. G., Yong, G. E., Jian-lin, L. A. N. G., Bo-lun, W. A. N. G., & Yue, Y. A. N. (2021). Effect of ultraviolet accelerated aging on mechanical and optical properties of polycarbonate. Journal of Materials Engineering, 49(11), 83-89.
Shalaby, S. W., & Pearce, E. M. (1974). Flame retardation of engineering thermoplastics. International Journal of Polymeric Materials, 3(2), 81-98.
Islam, M. T., Alam, A. R. U., Sakib, N., Hasan, M. S., Chakrovarty, T., Tawyabur, M., ... & Anwar Hossain, M. (2021). A rapid and cost‐effective multiplex ARMS‐PCR method for the simultaneous genotyping of the circulating SARS‐CoV‐2 phylogenetic clades. Journal of medical virology, 93(5), 2962-2970.
Lu, T., Fang, W., Zhou, Q., Liu, M., & Wu, G. (2024). Synthesis and hygrothermal aging of polycarbonates containing a bisphenol fluorene moiety. RSC advances, 14(25), 17771-17779.
Zhang, S., Wang, B., Meng, X., & Chen, Y. (2023). Mechanical Properties and Fracture Microstructure of Polycarbonate under High Strain Rate Tension. Materials, 16(9), 3386. https://doi.org/10.3390/ma16093386.
Bahar, A., Belhabib, S., Guessasma, S., Benmahiddine, F., Hamami, A. E. A., & Belarbi, R. (2022). Mechanical and thermal properties of 3D printed polycarbonate. Energies, 15(10), 3686.
Plaskolite Teknik Dokümanı- https://plaskolite.com/products-services/product-brands/tuffak, son erişim 7 Kasım 2025)
Shirshin, K. V., Kornienko, P. V., & Shalaginova, I. A. (2020). Acrylic compositions for adhesion of poly (methyl metacrylate), poly (met) acrylamides, and polycarbonate. Polymer Science, Series D, 13(1), 1-5.
Kumar, R., Kar, K. K., & Kumar, V. (2018). Studies on the effect of compatibilizers on mechanical, thermal and flow properties of polycarbonate/poly (butylene terephthalate) blends. Materials Research Express, 5(1), 015306.
Redjala, S., Aït Hocine, N., Ferhoum, R., Gratton, M., Poirot, N., Azem, S. (2020). UV aging effects on polycarbonate properties. Journal of Failure Analysis and Prevention, 20(6), 1907–1916.
Geoola, F., Kashti, Y., Levi, A. and Brickman, R. 2004. Quality evaluation of anti-drop properties of greenhouse cladding materials. Polymer Testing, 23: 755-761.
Sangpradit, K. 2014. Study of the solar transmissivity of plastic cladding materials and influence of dust and dirt on greenhouse cultivations. Energy Procedia, 56: 566-573.
Mariz-Ponte, N., Martins, S., Gonçalves, A., Correia, C.M., Ribeiro, C., Dias, M.C., et al. 2019. The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers. Sci. Hortic. 246: 777-784.
Mogharreb, M.M. and Abbaspour-Fard, M.H. 2019. Experimental study on the effect of a novel water injected polycarbonate shading on light transmittance and greenhouse interior conditions. Energy for Sustainable Development, 52: 26.
Peretz, M.F., Farhad, G., Yehia, I., Ozer, S., Levi, A., Magadley, E., Brikman, R., Rosenfeld, L., Levy, A., Kacira, M. and Teitel, M. 2019. Testing organic photovoltaic modules for application as greenhouse cover or shading element. Biosystems Engineering, 184: 24-36.
Prospector Knowledge Center. (2022, 16 Kasım). An overview of polycarbonate [Polikarbonatın genel özelliklerine dair teknik inceleme]. Erişim adresi: https://www.unqpc.com/an-overview-of-polycarbonate-prospector-knowledge-center/
Mintorogo, D.S. 2007. The aquatic-polycarbonate skylight for surabaya indonesia. DIMENSI J. Archit. Built Environ., 35 (1): 100.
Serrano, M.A. and Moreno, J.C. 2020. Spectral transmission of solar radiation by plastic and glass materials. Journal of Photochemistry & Photobiology, 208:111894.
Giacomelli, G.A. 1999. Greenhouse glazings: Alternatives under the sun. Department of Bioresource Engineering, Cook College, Rutgers University, New Brunswick, New Jersey.
Çaylı, A., Akyüz, A., Baytorun, A.N., Üstün, Ü. ve Boyacı, S. 2016. Seralarda ısı kaybına neden olan yapısal sorunların termal kamera ile belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Bilimleri Dergisi, Cilt 19 (1): 5-14.
Emekli, N.Y., Büyüktaş, K. and Başçetinçelik, A. 2016. Changes of the light transmittance of the LDPE films during the service life for greenhouse application. Journal of Building Engineering, 6: 126-132.
Chen, H., Ginzburg, V.V., Yang, J., Yang, Y., Liu, W., Huang, Y., Du, L. and Chen, B. 2016. Thermal conductivity of polymer-based composites: fundamentals and applications. Progress in Polymer Science, 59: 41-85.