Sera İklim Yönetiminde Buhar Basıncı Açığı (VPD) Temelli Yaklaşımlar

Özet

Referanslar

Üstün S, Batman Yöresi Modern Seracılık İşletmelerinin Isı Gereksinim Değerlerinin Hesaplanması, Isı Koruma Önlemlerinin Isı Tüketimine Etkilerinin Belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi. 2024;27(3): 644-655.

Atılgan A, Boyacı S, Famielec S, et al., Energy Potential of Greenhouse Plant Residue: The Cases of Turkey and Poland. Energies. 2025;18(13): 3405.

Boyacı S, Kocięcka J, Jagosz B, et al., Energy Efficiency in Greenhouses and Comparison of Energy Sources Used for Heating.

Baytorun AN and Üstün S, Seralarda Bir Günlük Toplam Sıcaklığa Göre Yapılan Dinamik Kontrol Stratejisine Bağlı Enerji Tasarrufunun Belirlenmesi. Tarim ve Doga Dergisi. 2022;25(5): 1119.

Boyaci S, Ertuğrul Ö, and Özgünaltay Ertuğrul G, Spatial evaluation of plant residual energy potential in greenhouse tomato cultivation in Kırşehir. 2021.

Çaylı A and Baytorun A, Analysis of Climate and Vapor Pressure Deficit (VPD) in a Heated Multi-Span Plastic Greenhouse. Journal of Animal & Plant Sciences. 2021;31(6).

Baytorun AN, Seralar, Sera Tipleri, Donanımı ve İklimlendirilmesi. 1 ed., İstanbul: Nobel kitabevi; 2016. 444.

Yuan W, Zheng Y, Piao S, et al., Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science advances. 2019;5(8): eaax1396.

Grossiord C, Buckley TN, Cernusak LA, et al., Plant responses to rising vapor pressure deficit. New phytologist. 2020;226(6): 1550-1566.

Boyacı S, Kocięcka J, Kęsicka B, et al., Assessment of the Crop Water Stress Index for Green Pepper Cultivation Under Different Irrigation Levels. Sustainability. 2025;17(13): 5692.

Lu N, Nukaya T, Kamimura T, et al., Control of vapor pressure deficit (VPD) in greenhouse enhanced tomato growth and productivity during the winter season. Scientia Horticulturae. 2015;197: 17-23. doi: https://doi.org/10.1016/j.scienta.2015.11.001.

Leuschner C, Air humidity as an ecological factor for woodland herbs: leaf water status, nutrient uptake, leaf anatomy, and productivity of eight species grown at low or high vpd levels. Flora - Morphology, Distribution, Functional Ecology of Plants. 2002;197(4): 262-274. doi: https://doi.org/10.1078/0367-2530-00040.

Stanghellini C, Van't Ooster B, and Heuvelink E, Greenhouse horticulture: Technology for optimal crop production. Brill; 2025.

Seginer I, Efficient greenhouse design: Evapotranspiration approximated by a linear function of global radiation. Biosystems Engineering. 2022;224: 213-225.

Taiz L, Zeiger E, Moller IM, et al., Plant Physiology and Development. Sinauer Assotiates. Inc., Publishers Sunderland, Massachusetts. pp. 2014;761.

Lang A, Physiology of flower initiation, in In Encyclopedia of Plant Physiology, W. Ruhland, Editor. 1965, Springer-Verlag: Berlin.

Jones HG, Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge university press; 2014.

Rengel Z, Cakmak I, and White PJ, Marschner's mineral nutrition of plants. London: Academic press; 2022.

Gruda N and Tanny J. Protected crops–recent advances, innovative technologies and future challenges. in XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): 1107. 2014. (pp. 271-278).

Üstün S, Çölkesen EK, Bolat KG, et al., Doğu Akdeniz Bölgesi Modern Seralarında Farklı Örtü Malzemesi ile Farklı Isı Perdesi Kullanımının Sera Isı Gereksinimine Etkisinin Belirlenmesi. Tarim ve Doga Dergisi. 2024;27(6): 1343.

Baytorun AN, Üstün S, Akyüz A, et al., Determination of Ventilation Openings Ratio in Greenhouses under Mediterranean Climate Conditions. Turkish Journal of Agriculture-Food Science and Technology. 2017;5(4): 409-415.

Katsoulas N, Baille A, and Kittas C. Transpiration and Energy Balance of a Greenhouse Rose Crop in Mediterranean Summer Conditions. in V International Symposium on Protected Cultivation in Mild Winter Climates: Current Trends for Suistainable Technologies 559. 2000. (pp. 395-400).

Van Henten E and Bontsema J, Time-scale decomposition of an optimal control problem in greenhouse climate management. Control Engineering Practice. 2009;17(1): 88-96.

Çaylı A, Akyüz A, Baytorun AN, et al., The Feasibility of a Cloud-Based Low-Cost Environmental Monitoring System Via Open Source Hardware in Greenhouses. KSU J. Agric Nat. 2018;21(3): 323-338. doi: 10.18016/ksudobil.341513.

Çaylı A, Akyüz A, Baytorun AN, et al., Control of Greenhouse Environmental Conditions with IOT Based Monitoring and Analysis System. Turkish Journal of Agriculture-Food Science and Technology. 2017;5(11): 1279-1289.

Çaylı A and Mercanlı AS, The Impact of Greenhouse Environmental Conditions on the Signal Strength of wi-fi Based Sensor Network. International Journal of Advanced Research (IJAR). 2017;5(6): 774-781. doi: 10.21474/IJAR01/4475.

Campbell GS and Norman JM, An introduction to environmental biophysics. Springer Science & Business Media; 2000.

Fordham MC, Harrison‐Murray RS, Knight L, et al., Effects of leaf wetting and high humidity on stomatal function in leafy cuttings and intact plants of Corylus maxima. Physiologia plantarum. 2001;113(2): 233-240.

Von Zabeltitz C, Integrated Greenhouse Systems for Mild Climates: Climate Conditions, Design, Construction, Maintenance, Climate Control, Berlin, Springer, 285-311. Integrated Greenhouse Systems for Mild Climates: Climate Conditions, Design, Construction, Maintenance, Climate Control. 2011. 285-311.doi: 10.1007/978-3-642-14582-7_12.

Sesveren S, Tulun Y, Dogan K, et al., Variation of the Soil Thermal Properties with Different Applications in Greenhouse Solarization. Pakistan Journal of Agricultural Sciences. 2025;62(1).

Ding J, Jiao X, Bai P, et al., Effect of vapor pressure deficit on the photosynthesis, growth, and nutrient absorption of tomato seedlings. Scientia Horticulturae. 2022;293: 110736. doi: https://doi.org/10.1016/j.scienta.2021.110736.

Çaylı A, Akyüz A, Baytorun AN, et al., Seralarda Isı Kaybına Neden Olan Yapısal Sorunların Termal Kamera ile Belirlenmesi. KSU Journal of Natural Sciences. 2016;19: 5-14. doi: 10.18016/KSUJNS.36715.

Nelson JA and Bugbee B, Analysis of environmental effects on leaf temperature under sunlight, high pressure sodium and light emitting diodes. PloS one. 2015;10(10): e0138930.

Alemu MD, Barak V, Shenhar I, et al., Dynamic physiological response of tef to contrasting water availabilities. Frontiers in Plant Science. 2024;15: 1406173.

Monteith JL and Unsworth MH, Chapter 2 - Properties of Gases and Liquids, in Principles of Environmental Physics (Fourth Edition), J.L. Monteith and M.H. Unsworth, Editors. 2013, Academic Press: Boston. p. 5-23.doi: https://doi.org/10.1016/B978-0-12-386910-4.00002-0.

Merilo E, Yarmolinsky D, Jalakas P, et al., Stomatal VPD Response: There Is More to the Story Than ABA Plant Physiology. 2017;176(1): 851-864. doi: 10.1104/pp.17.00912.

McAdam SA and Brodribb TJ, The evolution of mechanisms driving the stomatal response to vapor pressure deficit. Plant Physiology. 2015;167(3): 833-843.

Schoppach R and Sadok W, Transpiration sensitivities to evaporative demand and leaf areas vary with night and day warming regimes among wheat genotypes. Functional Plant Biology. 2013;40(7): 708-718.

Tullus A, Kupper P, Sellin A, et al., Climate change at northern latitudes: rising atmospheric humidity decreases transpiration, N-uptake and growth rate of hybrid aspen. 2012.

Tamang BG, Monnens D, Anderson JA, et al., The genetic basis of transpiration sensitivity to vapor pressure deficit in wheat. Physiologia Plantarum. 2022;174(5): e13752.

Tang K, Fracasso A, Struik PC, et al., Water-and nitrogen-use efficiencies of hemp (Cannabis sativa L.) based on whole-canopy measurements and modeling. Frontiers in Plant Science. 2018;9: 951.

Jiao X-C, Song X-M, Zhang D-L, et al., Coordination between vapor pressure deficit and CO2 on the regulation of photosynthesis and productivity in greenhouse tomato production. Scientific Reports. 2019;9(1): 8700.

Inoue T, Sunaga M, Ito M, et al., Minimizing VPD fluctuations maintains higher stomatal conductance and photosynthesis, resulting in improvement of plant growth in lettuce. Frontiers in plant science. 2021;12: 646144.

Stanghellini C, Thermal and Aerodynamic Conditions in Greenhouses in Relation to Estimation of Heat-Flux and Evapotranspiration - Reply. Agricultural and Forest Meteorology. 1995;77(1-2): 137-138. doi: Doi 10.1016/0168-1923(95)02244-R.

Medina S, Vicente R, Nieto-Taladriz MT, et al., The plant-transpiration response to vapor pressure deficit (VPD) in durum wheat is associated with differential yield performance and specific expression of genes involved in primary metabolism and water transport. Frontiers in plant science. 2019;9: 1994.

Boyaci S, Investigation Of The Effectiveness Of The Fan-Pad Cooling System And The Horizontal Temperature And Relative Humidity Changes In The Greenhouse. Fresenius Environmental Bulletin. 2018;27(12B): 9755-9761.

Baytorun AN, Zaimoğlu Z, Akyüz A, et al., Comparison of Greenhouse Fuel Consumption Calculated Using Different Methods with Actual Fuel Consumption. Turkish Journal of Agriculture-Food Science and Technology. 2018;6(7): 850-857.

Jiao X, Yu X, Ding J, et al., Effects of rising VPD on the nutrient uptake, water status and photosynthetic system of tomato plants at different nitrogen applications under low temperature. Scientia Horticulturae. 2022;304: 111335. doi: https://doi.org/10.1016/j.scienta.2022.111335.

Shamshiri R, Kalantari F, Ting K, et al., Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. International Journal of Agricultural and Biological Engineering. 2018;11(1): 1-22.

Both A-J, Benjamin L, Franklin J, et al., Guidelines for measuring and reporting environmental parameters for experiments in greenhouses. Plant Methods. 2015;11(1): 43.

Bakker JC, Analysis of humidity effects on growth and production of glasshouse fruit vegetables. 1991, Bakker.

Sattar SSA and Al-Badri SB, Amount Of Water Consumption For Evaporative Cooling Pads. Iraqi Journal Of Agricultural Sciences. 2012;43(6): 78-82.

Iraqi D, Dorais M, and Gosselin A, Influence of vapor pressure deficit on photosynthesis and pigment content of greenhouse tomato leaves. 1998.

Heuvelink E, Bakker M, Marcelis L, et al., Climate and yield in a closed greenhouse. Acta Horticulturae. 2008;801: 1083-1092.

Blasco X, Martínez M, Herrero JM, et al., Model-based predictive control of greenhouse climate for reducing energy and water consumption. Computers and electronics in agriculture. 2007;55(1): 49-70.

Kittas C, Bartzanas T, and Jaffrin A, Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosystems Engineering. 2003;85(1): 87-94. doi: 10.1016/S1537-5110(03)00018-7.

Morison J, Baker N, Mullineaux P, et al., Improving water use in crop production. Philosophical Transactions of the Royal Society B: Biological Sciences. 2008;363(1491): 639-658.

Boulard T and Wang S, Greenhouse crop transpiration simulation from external climate conditions. Agricultural and forest meteorology. 2000;100(1): 25-34.

Medrano E, Lorenzo P, Sánchez-Guerrero MC, et al., Evaluation and modelling of greenhouse cucumber-crop transpiration under high and low radiation conditions. Scientia Horticulturae. 2005;105(2): 163-175.

Stanghellini C, Transpiration of greenhouse crops, an aid to climate management (Ph. D. dissertation). Wageningen, The Netherlands: Wageningen Agricultural University. 1987.

Noh H and Lee J, The effect of vapor pressure deficit regulation on the growth of tomato plants grown in different planting environments. Applied Sciences. 2022;12(7): 3667.

Majdoubi H, Boulard T, Fatnassi H, et al., Airflow and microclimate patterns in a one-hectare Canary type greenhouse: An experimental and CFD assisted study. Agricultural and Forest Meteorology. 2009;149(6-7): 1050-1062.

Stanghellini C, Kempkes F, and Knies P. Enhancing environmental quality in agricultural systems. in International Symposium on Managing Greenhouse Crops in Saline Environment 609. 2003. (pp. 277-283).

Yayınlanan

13 Ocak 2026

Lisans

Lisans