Dijital Tarımın Geleceği: Hassas Tarım Yaklaşımları

Özet

Referanslar

Roberts DP, Short Jr NM, Sill J, et al. Precision agriculture and geospatial techniques for sustainable disease control. Indian Phytopathology. 2021;74(2):287-305.

Seelan SK, Laguette S, Casady GM, et al. Remote sensing applications for precision agriculture: A learning community approach. Remote sensing of environment. 2003;88(1-2):157-69.

Martínez J, Egea G, Agüera J, et al. A cost-effective canopy temperature measurement system for precision agriculture: A case study on sugar beet. Precision Agriculture. 2017;18(1):95-110.

Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture. Proceedings of the national academy of sciences. 2011;108(50):20260-4.

Martinez J. Controlled Environment Agriculture: A Systematic Review. Food Safety. 2024.

Maes WH, Steppe K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends in plant science. 2019;24(2):152-64.

Pierce FJ, Nowak P. Aspects of precision agriculture. Advances in agronomy. 1999;67:1-85.

Gebbers R, Adamchuk VI. Precision agriculture and food security. Science. 2010;327(5967):828-31.

Bucci G, Bentivoglio D, Finco A. Precision agriculture as a driver for sustainable farming systems: State of art in literature and research. Calitatea. 2018;19(S1):114-21.

Monteiro A, Santos S, Gonçalves P. Precision agriculture for crop and livestock farming—Brief review. Animals. 2021;11(8):2345.

Daccache A, Ciurana J, Diaz JR, et al. Water and energy footprint of irrigated agriculture in the Mediterranean region. Environmental Research Letters. 2014;9(12):124014.

Tey YS, Brindal M. Factors influencing the adoption of precision agricultural technologies: a review for policy implications. Precision agriculture. 2012;13(6):713-30.

Balafoutis A, Beck B, Fountas S, et al. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability. 2017;9(8):1339.

Kalisz B, Żuk-Gołaszewska K, Radawiec W, et al. Land use indicators in the context of land use efficiency. Sustainability. 2023;15(2):1106.

Aküzüm T, Çakmak B, Gökalp Z. Türkiye’de su kaynakları yönetiminin değerlendirilmesi. International Journal of Agricultural and Natural Sciences. 2010;3(1):67-74.

Müdürlüğü DSİG. Su Kaynakları Verileri 2023 [Available from: https://www.dsi.gov.tr/Sayfa/Detay/754.

Martínez-Fernández J, González-Zamora A, Sánchez N, et al. Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sensing of Environment. 2016;177:277-86.

Survey USG. Water Science for School: How Much Water Is There on Earth? 2006a:Pp. 1-3.

Giannerini G, Genovesi R. The water saving with Irriframe platform for thousands of Italian farms. Journal of Agricultural Informatics. 2015;6(4).

Tanriverdi C. Using TDR in the agricultural water management. KSUJ Sci Eng. 2005;2:108-15.

Tanriverdi C. Available water effects on water stress indices for irrigated corn grown in sandy soils: Colorado State University; 2003.

Idso S, Jackson R, Pinter Jr P, et al. Normalizing the stress-degree-day parameter for environmental variability. Agricultural meteorology. 1981;24:45-55.

Kacira M, Ling P, Short T. Establishing crop water stress index (cwsi) threshold values for early, non–contact detection of plant water stress. Transactions of the ASAE. 2002;45(3):775.

Moran M, Clarke T, Inoue Y, et al. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote sensing of environment. 1994;49(3):246-63.

Rud R, Cohen Y, Alchanatis V, et al. Crop water stress index derived from multi-year ground and aerial thermal images as an indicator of potato water status. Precision Agriculture. 2014;15(3):273-89.

El-Shirbeny M, Ali A, Rashash A, et al. Wheat yield response to water deficit under central pivot irrigation system using remote sensing techniques. World Journal of Engineering and Technology. 2015;3(3):65-72.

Erdem Y, Şehirali S, Erdem T, et al. Determination of crop water stress index for irrigation scheduling of bean (Phaseolus vulgaris L.). Turkish Journal of Agriculture and Forestry. 2006;30(3):195-202.

Gönen E, Tanrıverdi Ç. The Effects of Different Nitrogen Levels and Irrigation Intervals on Yield and Water Productivity of Cotton Grown in the Eastern Mediterranean Region. Turkish Journal of Agricultural and Natural Sciences.8(4):898-904.

Tanriverdi C, Degirmenci H, Sesveren S. Assessment of irrigation schemes in Turkey based on management types. African Journal of Biotechnology. 2011;10(11):1997-2004.

Stafford JV. Implementing precision agriculture in the 21st century. Journal of agricultural engineering research. 2000;76(3):267-75.

Zhang N, Wang M, Wang N. Precision agriculture—a worldwide overview. Computers and electronics in agriculture. 2002;36(2-3):113-32.

Tekin AB, Şen E. Hiper spektral görüntülemenin tarımda kullanımı. Tarım Makinaları Bilimi Dergisi. 2017;13(3):127-31.

Monteiro A, Santos S, Goncalves P. Precision Agriculture for Crop and Livestock Farming-Brief Review. Animals (Basel). 2021;11(8).

Robertson M, Carberry P, Brennan L. The economic benefits of precision agriculture: case studies from Australian grain farms. Crop Pasture Sci. 2007;60:2012.

Aubert BA, Schroeder A, Grimaudo J. IT as enabler of sustainable farming: An empirical analysis of farmers' adoption decision of precision agriculture technology. Decision support systems. 2012;54(1):510-20.

Sangeetha C, Moond V, Damor JS, et al. Remote sensing and geographic information systems for precision agriculture: A Review. International Journal of Environment and Climate Change. 2024;14(2):287-309.

Raihan A. A systematic review of Geographic Information Systems (GIS) in agriculture for evidence-based decision making and sustainability. Global Sustainability Research. 2024;3(1):1-24.

Warren G, Metternicht G. Agricultural applications of high-resolution digital multispectral imagery. Photogrammetric Engineering & Remote Sensing. 2005;71(5):595-602.

Colwell RN. Determining the prevalence of certain cereal crop diseases by means of aerial photography. 1956.

DeTar WR, Chesson JH, Penner JV, et al. Detection of soil properties with airborne hyperspectral measurements of bare fields. Transactions of the ASABE. 2008;51(2):463-70.

Gomez C, Rossel RAV, McBratney AB. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma. 2008;146(3-4):403-11.

Rao NR, Garg PK, Ghosh SK. Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data. Precision Agriculture. 2007;8(4):173-85.

Rao NR, Garg P, Ghosh S, et al. Estimation of leaf total chlorophyll and nitrogen concentrations using hyperspectral satellite imagery. The Journal of Agricultural Science. 2008;146(1):65-75.

Lan Y, Huang Y, Martin D, et al. Development of an airborne remote sensing system for crop pest management: system integration and verification. Applied engineering in agriculture. 2009;25(4):607-15.

Lelong CC, Pinet PC, Poilvé H. Hyperspectral imaging and stress mapping in agriculture: A case study on wheat in Beauce (France). Remote sensing of environment. 1998;66(2):179-91.

Erickson BJ, Johannsen CJ, Vorst JJ, et al. Using remote sensing to assess stand loss and defoliation in maize. Photogrammetric Engineering & Remote Sensing. 2004;70(6):717-22.

Wu C, Niu Z, Tang Q, et al. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and forest meteorology. 2008;148(8-9):1230-41.

Lamb D, Brown RB. Pa—precision agriculture: Remote-sensing and mapping of weeds in crops. Journal of Agricultural Engineering Research. 2001;78(2):117-25.

Scotford I, Miller P. Applications of spectral reflectance techniques in northern European cereal production: a review. Biosystems engineering. 2005;90(3):235-50.

Gutiérrez P, López-Granados F, Peña-Barragán J, et al. Logistic regression product-unit neural networks for mapping Ridolfia segetum infestations in sunflower crop using multitemporal remote sensed data. Computers and Electronics in Agriculture. 2008;64(2):293-306.

Zhang C, Kovacs JM. The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture. 2012;13(6):693-712.

Torres-Sánchez J, López-Granados F, De Castro AI, et al. Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PloS one. 2013;8(3):e58210.

Shaw DR. Remote sensing and site‐specific weed management. Frontiers in Ecology and the Environment. 2005;3(10):526-32.

Pinter Jr PJ, Hatfield JL, Schepers JS, et al. Remote sensing for crop management. Photogrammetric Engineering & Remote Sensing. 2003;69(6):647-64.

de Castro AI, Jurado-Expósito M, Peña-Barragán JM, et al. Airborne multi-spectral imagery for mapping cruciferous weeds in cereal and legume crops. Precision Agriculture. 2012;13(3):302-21.

Huang H, Lan Y, Yang A, et al. Deep learning versus Object-based Image Analysis (OBIA) in weed mapping of UAV imagery. International Journal of Remote Sensing. 2020;41(9):3446-79.

Li T, Cui L, Kuhnert M, et al. A comprehensive review of soil organic carbon estimates: Integrating remote sensing and machine learning technologies. Journal of Soils and Sediments. 2024;24(11):3556-71.

Jiménez C, Prigent C, Mueller B, et al. Global intercomparison of 12 land surface heat flux estimates. Journal of Geophysical Research: Atmospheres. 2011;116(D2).

Mulla DJ. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems engineering. 2013;114(4):358-71.

Partel V, Kakarla SC, Ampatzidis Y. Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Computers and electronics in agriculture. 2019;157:339-50.

Wolfert S, Ge L, Verdouw C, et al. Big data in smart farming–a review. Agricultural systems. 2017;153:69-80.

Abdulridha J, Ampatzidis Y, Kakarla SC, et al. Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques. Precision Agriculture. 2020;21(5):955-78.

Katsigiannis P, Galanis G, Dimitrakos A, et al., editors. Fusion of spatio-temporal UAV and proximal sensing data for an agricultural decision support system. Fourth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016); 2016: SPIE.

Shamshiri RR, Sturm B, Weltzien C, et al. Digitalization of agriculture for sustainable crop production: a use-case review. Frontiers in Environmental Science. 2024;12:1375193.

Tanriverdi C. A review of remote sensing and vegetation indices in precision farming. J Sci Eng. 2006;9:69-76.

Abdalla A, Mirzakhani Nafchi A. Development and evaluation of an affordable variable rate applicator controller for precision agriculture. AgriEngineering. 2024;6(4):4639-57.

Değirmenci HT, Çağatay; Arslan, Fırat. Sulama Projelerinin Modernizasyonu. 12 Ulusal Kültürteknik Sempozyumu. TEKİRDAĞ, TÜRKİYE2014.

Shamshiri R, Kalantari F, Ting K, et al. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. International Journal of Agricultural and Biological Engineering. 2018;11(1):1-22.

Banerjee S, Mukherjee A, Kamboj S. Precision Agriculture Revolution: Integrating Digital Twins and Advanced Crop Recommendation for Optimal Yield. arXiv preprint arXiv:250204054. 2025.

Schimmelpfennig D. Farm profits and adoption of precision agriculture. 2016.

Yayınlanan

13 Ocak 2026

Lisans

Lisans