Kaempferol: Phytochemical Structure and Biological Activities
Özet
Natural products and their bioactive compounds have been used for centuries to prevent and treat numerous diseases. Studies have demonstrated that kaempferol, a flavonoid abundant in vegetables, fruits, and spices, exhibits a variety of biological activities. Kaempferol's biological effects are multifaceted and are particularly notable for its antioxidant, anti-inflammatory, anticancer, cardioprotective, and neuroprotective activities. These effects occur through various molecular processes, including free radical scavenging capacity, regulation of antioxidant enzymes, suppression of inflammatory pathways, and modulation of the cell cycle and apoptotic mechanisms. Furthermore, kaempferol affects gene expression and cellular metabolism by targeting important cellular signaling pathways. Recent studies have demonstrated kaempferol's potential to reduce proliferation in cancer cells, inhibit metastasis, and increase sensitivity to chemotherapeutic drugs. It is also reported to improve vascular function against cardiovascular diseases, reduce lipid peroxidation, and exhibit endothelial protective effects. Although there is promising evidence for its ability to manage diseases, further research is vital to understand its toxicity, safety aspects, and mechanism of action in health management. This chapter comprehensively reviews the chemical structure, biological activity mechanisms, and therapeutic potential of kaempferol in light of current literature.
Referanslar
Calderon-Montano J, Burgos-Moron E, Perez-Guerrero C, Lopez-Lazaro M. A Review on the Dietary Flavonoid Kaempferol. Mini-Reviews Med Chem. 2011;11(4):298–344. doi: 10.2174/138955711795305335.
Imran M, Salehi B, Sharifi-Rad J, Gondal TA, Saeed F, Imran A, et al. Kaempferol: A key emphasis to its anticancer potential. Molecules. MDPI. 2019;24(12):2277. doi: 10.3390/molecules24122277.
Periferakis A, Periferakis K, Badarau IA, Petran EM, Popa DC, Caruntu A, et al. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Vol. 23, International Journal of Molecular Sciences. MDPI; 23(23): 15054. https://doi.org/10.3390/ijms232315054.
Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chemistry. 2013;138: 2099–107.
Devi KP, Malar DS, Nabavi SF, Sureda A, Xiao J, Nabavi SM, et al. Kaempferol and inflammation: From chemistry to medicine. Pharmacological Research. Academic Press. 2015;99: 1–10.
Calabrese EJ, Pressman P, Hayes AW, Baldwin L, Agathokleous E, Kapoor H, et al. Kaempferol, a widely ingested dietary flavonoid and supplement, enhances biological performance via hormesis, especially for ageing-related processes. Mech Ageing Dev. 2025;1:225.
Yang L, Gao Y, Bajpai VK, El-Kammar HA, Simal-Gandara J, Cao H, et al. Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives. Critical Reviews in Food Science and Nutrition. Taylor and Francis Ltd.; 2023;63: 2773–89.
Ren J, Lu Y, Qian Y, Chen B, Wu T, Ji G. Recent progress regarding kaempferol for the treatment of various diseases (Review). Exp Ther Med. 2019;18(4):2759–2776. doi: 10.3892/etm.2019.7886.
Chen J, Zhong H, Huang Z, Chen X, You J, Zou T. A Critical Review of Kaempferol in Intestinal Health and Diseases. Antioxidants. Multidisciplinary Digital Publishing Institute (MDPI); 2023;12(8): 1642. https://doi.org/10.3390/antiox12081642
Speisky H, Arias-Santé MF, Fuentes J. Oxidation of Quercetin and Kaempferol Markedly Amplifies Their Antioxidant, Cytoprotective, and Anti-Inflammatory Properties. Antioxidants. 2023;9;12(1):155. doi: 10.3390/antiox12010155.
Dabeek WM, Marra MV. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients. MDPI. 2019;25;11(10):2288. doi: 10.3390/nu11102288.
García-Mediavilla V, Crespo I, Collado PS, Esteller A, Sánchez-Campos S, Tuñón MJ, et al. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur J Pharmacol. 2007;28;557(2–3):221–9.
Alam W, Khan H, Shah MA, Cauli O, Saso L. Kaempferol as a Dietary Anti-Inflammatory Agent: Current Therapeutic Standing. Molecules. 2020;7;25(18):4073. doi: 10.3390/molecules25184073.
Cannataro R, Fazio A, Torre C La, Caroleo MC, Cione E. Polyphenols in the mediterranean diet: From dietary sources to microrna modulation. Antioxidants. MDPI. 2021;23;10(2):328. doi: 10.3390/antiox10020328.
Ferrer MD, Sureda A, Mestre A, Tur JA, Pons A. The double edge of reactive oxygen species as damaging and signaling molecules in HL60 cell culture. Cell Physiol Biochem. 2010;25(2–3):241–52. doi: 10.1159/000276558.
Almatroodi SA, Almatroudi A, Alsahli MA, Khan AA, Rahmani AH. Thymoquinone, an Active Compound of Nigella sativa: Role in Prevention and Treatment of Cancer. Curr Pharm Biotechnol. 2020;21(11):1028–1041. doi: 10.2174/1389201021666200416092743.
Alzohairy MA, Khan AA, Alsahli MA, Almatroodi SA, Rahmani AH. Protective effects of thymoquinone, an active compound of nigella sativa, on rats with benzo(A)pyrene-induced lung injury through regulation of oxidative stress and inflammation. Molecules. 2021; 27;26(11):3218. doi: 10.3390/molecules26113218.
Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82(4):513–23. doi: 10.1016/j.fitote.2011.01.018.
19. Wang Y, Chen C, Li Y, Li R, Wang J, Wu C, et al. Kaempferol inhibits oxidative stress and reduces macrophage pyroptosis by activating the NRF2 signaling pathway. PLoS One. 2025;20(6): e0325189. https://
doi.org/10.1371/journal.pone.0325189.
Biswas SK. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxidative Medicine and Cellular Longevity. Hindawi Publishing Corporation. 2016;2016:5698931. doi: 10.1155/2016/5698931.
Hofer S, Geisler S, Lisandrelli R, Ngoc HN, Ganzera M, Schennach H, et al. Pharmacological targets of kaempferol within inflammatory pathways—a hint towards the central role of tryptophan metabolism. Antioxidants. 2020; 21;9(2):180. doi: 10.3390/antiox9020180.
Herrera TES, Tello IPS, Mustafa MA, Jamil NY, Alaraj M, Atiyah Altameem KK, et al. Kaempferol: Unveiling its anti-inflammatory properties for therapeutic innovation. Cytokine. 2025;186:156846. doi: 10.1016/j.cyto.2024.156846.
Alkhalidy H, Moore W, Wang Y, Luo J, McMillan RP, Zhen W, et al. The flavonoid kaempferol ameliorates streptozotocin-induced diabetes by suppressing hepatic glucose production. Molecules. 2018;13;23(9):2338. doi: 10.3390/molecules23092338.
Muriel P. Liver pathophysiology : therapies and antioxidants. Chapter 1 - The Liver: General Aspects and Epidemiology, Academic Press is an imprint of Elsevier; 2017. p.3–22. https://doi.org/10.1016/B978-0-12-804274-8.00001-1.
Almatroodi SA, Alsahli MA, Alharbi HM, Khan AA, Rahmani AH. Epigallocatechin-3-gallate (EGCG), an active constituent of green tea: Implications in the prevention of liver injury induced by diethylnitrosamine (DEN) in rats. Appl Sci. 2019;1;9(22):4821. https://doi.org/10.3390/app9224821.
Rahmani AH, Almatroudi A, Allemailem KS, Alharbi HOA, Babiker AY, Althwab SA, Alsuhaymi N, Alsugoor MH, Khan AA, Al-Megrin WAI. Oleuropein, a phenolic component of Olea europaea L. ameliorates CCl4-induced liver injury in rats through the regulation of oxidative stress and inflammation. Eur Rev Med Pharmacol Sci. 2024;28(4):1259–1271. doi: 10.26355/eurrev_202402_35447.
Przemyslaw N, Krajewska A, Oniszczuk T, Polak B, Oniszczuk A. Hepatoprotective Effect of Kaempferol — A Review. Molecule. 2025; 30(9): 1913. https://doi.org/10.3390/molecules30091913.
Li Q, Hu X, Xuan Y, Ying J, Fei Y, Rong J, et al. Kaempferol protects ethanol-induced gastric ulcers in mice via pro-inflammatory cytokines and NO. Acta Biochim Biophys Sin (Shanghai). 2018; 1;50(3):246–53. doi: 10.1093/abbs/gmy002. PMID: 29415150.
Alrumaihi F, Almatroodi SA, Alharbi HOA, Alwanian WM, Alharbi FA, Almatroudi A, et al. Pharmacological Potential of Kaempferol, a Flavonoid in the Management of Pathogenesis via Modulation of Inflammation and Other Biological Activities. Molecules. Multidisciplinary Digital Publishing Institute (MDPI); 2024;26;29(9):2007. doi: 10.3390/molecules29092007.
Sharma D, Kumar Tekade R, Kalia K. Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: An in vitro and in vivo study in diabetic nephropathy mice model. Phytomedicine. 2020;1;76:153235. doi: 10.1016/j.phymed.2020.153235.
Babaei P, Eyvani K, Kouhestani S. Sex-Independent Cognition Improvement in Response to Kaempferol in the Model of Sporadic Alzheimer’s Disease. Neurochem Res. 202;1;46(6):1480-1486. doi: 10.1007/s11064-021-03289-y.
Pate KM, Rogers M, Reed JW, van der Munnik N, Vance SZ, Moss MA. Anthoxanthin Polyphenols Attenuate Aβ Oligomer-induced Neuronal Responses Associated with Alzheimer’s Disease. CNS Neurosci Ther. 2017;1;23(2):135–44. doi: 10.1111/cns.12659.
Beg T, Jyoti S, Naz F, Rahul, Ali F, Ali SK, et al. Protective Effect of Kaempferol on the Transgenic Drosophila Model of Alzheimer’s Disease. CNS Neurol Disord - Drug Targets. 2018;10;17(6):421–9. doi: 10.2174/1871527317666180508123050.
Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, et al. The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca2+ Signaling. Curr Biol. 2018;28(5):666–75e5. doi: 10.1016/j.cub.2018.01.023.
Hasanpourghadi M, Looi CY, Pandurangan AK, Sethi G, Wong WF, Mustafa MR. Phytometabolites Targeting the Warburg Effect in Cancer Cells: A Mechanistic Review. Curr Drug Targets. 2017;18(9):1086–1094. doi: 10.2174/1389450117666160401124842.
Turek M, Krzyczmonik M, Balczewski P. New Hopes in Cancer Battle - A Review of New Molecules and Treatment Strategies. Med Chem (Los Angeles). 2016;17;12(8):700–19. doi: 10.2174/1573406412666160502153700.
Almatroodi SA, Almatroudi A, Alsahli MA, Khan AA, Rahmani AH. Thymoquinone, an Active Compound of Nigella sativa: Role in Prevention and Treatment of Cancer. Curr Pharm Biotechnol. 2020;16;21(11):1028–41. doi: 10.2174/1389201021666200416092743.
Almatroudi A, Allemailem KS, Alwanian WM, Alharbi BF, Alrumaihi F, Khan AA, et al. Effects and Mechanisms of Kaempferol in the Management of Cancers through Modulation of Inflammation and Signal Transduction Pathways. Vol. 24, International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute (MDPI). 2023;11;24(10):8630. doi: 10.3390/ijms24108630.
Rahmani AH, Almatroudi A, Allemailem KS, Alwanian WM, Alharbi BF, Alrumaihi F, et al. Myricetin: A Significant Emphasis on Its Anticancer Potential via the Modulation of Inflammation and Signal Transduction Pathways. Vol. 24, International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute (MDPI). 2023 :2;24(11):9665. doi: 10.3390/ijms24119665.
Gonelimali FD, Lin J, Miao W, Xuan J, Charles F, Chen M, et al. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front Microbiol. 2018 ;9:1639. doi: 10.3389/fmicb.2018.01639.
Liu J, Wen J, Lu J, Zhou H, Wang G. Kaempferol and Kaempferin Alleviate MRSA Virulence by Suppressing β -Lactamase and Inflammation. Molecules, 30(20), 4132. https://doi.org/10.3390/molecules30204132.
Patil SV, Borase HP, Patil CD. et al. Biosynthesis of Silver Nanoparticles Using Latex from Few Euphorbian Plants and Their Antimicrobial Potential. Appl Biochem Biotechnol;2012; 167, 776-790. https://doi.org/10.1007/s12010-012-9710-z
Namini MS, Mohandesnezhad S, Mohandesnezhad S, Mansouri V, Tayebi L. Enhancing bone regeneration using kaempferol as an osteoprotective compound : signaling mechanisms, delivery strategies, and potential applications. J Biol Eng. 19,74 (2025). https://doi.org/10.1186/s13036-025-00545-5 2025;5.
Silva dos Santos J, Gonçalves Cirino JP, de Oliveira Carvalho P, Ortega MM. The Pharmacological Action of Kaempferol in Central Nervous System Diseases: A Review. Front Pharmacol. 2021;11.
Zhou H, Xu M, Guo W, Yao Z, Du X, Chen L, et al. The Antibacterial Activity of Kaempferol Combined with Colistin against Colistin-Resistant Gram-Negative Bacteria. Microbiol Spectr. 2022; 21;10(6).
Subbaraj GK, Masoodi T, Yasam SK, Chandrashekar K, Kulanthaivel L, Shaik NA, et al. Anti-angiogenic effect of nano-formulated water soluble kaempferol and combretastatin in an in vivo chick chorioallantoic membrane model and HUVEC cells. Biomed Pharmacother. 2023; 1;163.
Aghazadeh T, Bakhtiari N, Rad IA, Ramezani F. Formulation of kaempferol in nanostructured lipid carriers (Nlcs): A delivery platform to sensitization of mda-mb468 breast cancer cells to paclitaxel. Biointerface Res Appl Chem. 2021;11(6):14601–14591.
Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, et al. Kaempferol: Paving the path for advanced treatments in aging-related diseases. Experimental Gerontology; 2024;188:112389. doi: 10.1016/j.exger.2024.112389.