Tarımsal Sulamada Nanopartikül Kullanımı

Özet

Bu çalışma, tarımsal sulamada nanopartikül kullanımının su yönetimi, verimlilik ve sürdürülebilirlik üzerindeki etkilerini kapsamlı bir şekilde incelemektedir. Artan su kıtlığı, iklim değişikliği ve küresel gıda talebi, sulama suyunun hem miktar hem de kalite açısından daha etkili bir şekilde yönetilmesini gerektirmektedir. Bu bağlamda, nanoteknoloji, nanogübreler, nanopestisitler, nanosensörler ve nanomalzeme destekli sulama sistemleri aracılığıyla tarımsal üretim için yenilikçi çözümler sunmaktadır. Çalışma, metal ve metal oksit nanopartiküllerin (örneğin ZnO, TiO₂, Fe₃O₄) bitki büyümesini desteklediğini, stres toleransını artırdığını ve besin kullanım verimliliğini iyileştirdiğini vurgulamaktadır. Ayrıca, nanoteknoloji tabanlı su arıtma ve filtreleme sistemlerinin, sulama suyundaki ağır metallerin, pestisitlerin ve patojenlerin konsantrasyonlarını azaltarak su kalitesini iyileştirdiğini belirtmektedir. Nano-hidrojel ve yenilikçi sulama sistemleri sayesinde, toprak su tutma kapasitesi artarak %20-80 oranında su tasarrufu sağlanmaktadır. Ancak, nanopartiküllerin çevreye taşınması, birikmesi ve potansiyel toksik etkileri önemli riskler olarak vurgulanmaktadır. Sonuç olarak, nanoteknolojinin tarımsal sulamaya entegrasyonu mükemmel fırsatlar sunarken, çevresel risk değerlendirmeleri ve düzenleyici çerçevenin güçlendirilmesi sürdürülebilir uygulamalar için kritik öneme sahiptir.

Referanslar

Arbat G, Masseroni D. The use and management of agricultural irrigation systems and technologies. Agriculture, 2024;14(2):236. https://doi.org/10.3390/agriculture14020236

Ingrao C., Strippoli R, Lagioia G, et al. Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon, 2023;9(8). https://doi.org/10.1016/j.heliyon.2023.e18507

Cakmakci O, Cakmakci T, Durak ED, et al. Effects of arbuscular mycorrhizal fungi in melon (Cucumis melo L.) seedling under deficit irrigation. Fresenius Environmental Bulletin, 2017;26(12), 7513-7520.

Vallejo-Gomez D, Osorio M, Hincapie CA. Smart irrigation systems in agriculture: A systematic review. Agronomy, 2023;13(2), 342. https://doi.org/10.3390/agronomy13020342

Cakmakci Ö, Kipcak Bitik S, Ekincialp A, et al. Changes in some seedling growth parameters, nutrient content and enzyme activity in different melon (Cucumis melo L.) genotypes under deficit irrigation conditions. Journal of Agricultural Science and Technology, 2025;27(4), 775-790. 10.22034/JAST.27.4.775

Taguta C, Dirwai TL, Senzanje A, et al. Sustainable irrigation technologies: a water-energy-food (WEF) nexus perspective towards achieving more crop per drop per joule per hectare. Environmental Research Letters, 17(7), 073003.2022.

Yin W, Yang X, Liu W. Sustainable management and regulation of agricultural water resources in the context of global climate change. Sustainability, 2025;17(6), 2760. https://doi.org/10.3390/su17062760

Usman S. Soil and water management perspectives for tropical and dryland areas of Africa. Soil Studies, 2024;13(2), 103-117.

Musah AR, Asomah JK Innovative Water Policy Frameworks for Sustainable Agriculture: Integrating Smart Resource Management to Combat Climate Change. International Journal of Agriculture and Earth Science (IJAES) E-ISSN 2489-0081 P-ISSN 2695-1894. 2024.

Mathur S, Pareek S, Shrivastava D. Nanofertilizers for development of sustainable agriculture. Communications in Soil Science and Plant Analysis, 2022;53(16), 1999-2016.

Xin X, Judy JD, Sumerlin BB, et al. Nano-enabled agriculture: from nanoparticles to smart nanodelivery systems. Environmental Chemistry, 2020;17(6), 413-425. https://doi.org/10.1071/EN19254

Gulaiya S, Manzoor U, Singh S, et al. The Intersection of Nanotechnology and Agriculture: Enhancing Soil Fertility and Nutritional Outcomes--A Comprehensive Review. Journal of Pure & Applied Microbiology, 2025;19(2). https://doi.org/10.22207/JPAM.19.2.50

Rana L, Kumar M, Rajput J, et al. Nexus between nanotechnology and agricultural production systems: challenges and future prospects. Discover Applied Sciences, 2024;6(11), 555.

Kumar Y, Tiwari KN, Singh T, et al. Nanofertilizers and their role in sustainable agriculture. Annals of Plant and Soil Research, 2021;23(3), 238-255.

Ghosh N, Das S, Biswas G, et al. Review on some metal oxide nanoparticles as effective adsorbent in wastewater treatment. Water Science and Technology, 2022;85(12), 3370-3395. https://doi.org/10.2166/wst.2022.153

Tripathy J, Mishra A, Pandey M, et al. Advances in nanoparticles and nanocomposites for water and wastewater treatment: A review. Water, 2024;16(11), 1481.

Alshehri HS. Recent Advances in Nanomaterial-Based Wastewater Treatment: A Sustainable Approach. Polish Journal of Environmental Studies. 2025;1-20. https://doi.org/10.15244/pjoes/205261

Sirohi R, Kumar Y, Madhavan A, et al. Engineered nanomaterials for water desalination: Trends and challenges. Environmental Technology & Innovation, 2023;30, 103108.

Qu X, Alvarez PJ, Li Q. Applications of nanotechnology in water and wastewater treatment. Water research, 2013;47(12), 3931-3946.

Saleh TA. Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies. Environmental Technology & Innovation, 2021;24, 101821.

Taghipour S, Hosseini SM, Ataie-Ashtiani B. Engineering nanomaterials for water and wastewater treatment: review of classifications, properties and applications. New Journal of Chemistry, 2019;43(21), 7902-7927.

Pandey S. Nanotechnology Applications in Water Management and Irrigation Systems. Içinde Nanotechnology for Sustainable Agriculture and Food Security (ss. 153-163). DvS Scientific Publication. 2024. https://doi.org/10.5281/zenodo.14489138

Keller AA, Wang H, Zhou D, et al. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environmental science & technology, 2010;44(6), 1962-1967. https://doi.org/10.1021/es902987d

Petosa AR, Jaisi DP, Quevedo IR, et al. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environmental science & technology, 2010;44(17), 6532-6549. https://doi.org/10.1021/es100598h

Cakmakci T, Cakmakci O, Sahin U. The effect of biochar amendment on physiological and biochemical properties and nutrient content of lettuce in saline water irrigation conditions. Turkish Journal of Agriculture-Food Science and Technology, 2022;10(12), 2560-2570. https://doi.org/10.24925/turjaf.v10i12.2560-2570.5653

Çakmakci Ö, Çakmakci T, Şensoy S. Effects of silver nanoparticles on growth parameters of radish (Raphanus sativus L. Var. Radicula). Grown under deficit irrigation. Current Trends in Natural Sciences, 2022;11(21), 37-44.

El-Ramady H, Prokisch J, Sári D, et al. Nanotechnology in the soil system: An ecological approach towards sustainable management. Applied Soil Ecology, 2024;204, 105669. https://doi.org/10.1016/j.apsoil.2024.105669

Ürkmez H, Çakmakcı Ö. Effect of different doses of nano-silica applications on some growth parameters and nutrient uptake in arugula (Eruca sativa L.). Harran Tarım ve Gıda Bilimleri Dergisi, 2025;29(3), 469-476. https://doi.org/10.29050/harranziraat.1708633

Çakmakcı Ö, Şensoy S. Nano-silica modulates salt stress response in lettuce by enhancing growth, antioxidant activity, and mineral uptake. Plant, Soil and Environment, 2025;71(8). 10.17221/233/2025-pse

Demeke ED, Benti NE, Terefe MG, et al. A comprehensive review on nano-fertilizers: preparation, development, utilization, and prospects for sustainable agriculture in Ethiopia. Nanoscale Advances, 2025;7(8), 2131-2144. 10.1039/D4NA01068J

Sidik DAB, Hairom NHH, Daniel MZ, et al. Stability Evaluation of Zinc Oxide Nanofluids Using Mangifera Odorata Extracted Peels and Leaves. Journal of Science and Technology, 2025;17(1), 121-129.

Umasankareswari T, Dharshana V, Saravanadevi K, et al. Soil moisture nanosensors. In Nanosensors for Smart Agriculture (pp. 185-216). Elsevier. 2022. https://doi.org/10.1016/B978-0-12-824554-5.00019-7

Ali N, Itsaranuwat P. Survival enhancement of probiotic bacteria by encapsulation with chitosan succinate nano-particles and evaluation of survival in simulated gastrointestinal conditions (Doctoral dissertation, Mahasarakham University). 2023.

Batley GE, Kirby JK, McLaughlin MJ. Fate and risks of nanomaterials in aquatic and terrestrial environments. Accounts of chemical research, 46(3), 854-862. https://doi.org/10.1021/ar2003368

Yayınlanan

2 Ocak 2026

Lisans

Lisans