Nanopartiküllerin Su Kalitesine Etkisi
Özet
Bu çalışma, çok boyutlu bir yaklaşım kullanarak nanopartiküllerin su kalitesi üzerindeki etkilerini incelemektedir. Nanoteknolojinin endüstri, tarım, tıp ve çevre alanlarında yaygın olarak kullanılmasıyla birlikte, nano-gümüş, nano-TiO₂ ve nano-ZnO gibi nanopartiküllerin su ortamlarına taşınması önemli ölçüde artmıştır. Bu partiküller, yüksek yüzey alanları, kolloidal özellikleri ve çevrede geçirdikleri fizikokimyasal dönüşümler nedeniyle geleneksel kirleticilerden farklı davranışlar sergilerler. Çalışma, nanopartiküllerin suya girmesinin ana yollarını (tüketici ürünleri, endüstriyel süreçler, atık su arıtma tesisleri) ayrıntılı olarak açıklamakta ve bunların suyun fiziksel (bulanıklık, ışık geçirgenliği), kimyasal (pH, iletkenlik, metal iyon salınımı) ve biyolojik (yosun, mikroorganizmalar) kalite parametreleri üzerindeki etkileri değerlendirilmektedir. Ayrıca, nanopartiküllerin ekotoksikolojik sonuçları, mikrobiyal aktiviteyi bastırmaları ve tarımsal sulama suyu kalitesi üzerindeki dolaylı etkileri vurgulanmaktadır. Nanoteknolojiye dayalı su arıtma uygulamalarının avantajlarına rağmen, nanopartikül kalıntıları yeni bir çevresel risk oluşturabilir. Sonuç olarak, sürdürülebilir su ve tarım yönetimini desteklemek için nanopartiküllerin su ekosistemleri üzerindeki etkileri dikkatle izlenmelidir.
Referanslar
Lead JR, Batley GE, Alvarez PJ, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects—an updated review. Environmental toxicology and chemistry, 2018;37(8), 2029-2063. https://doi.org/10.1002/etc.4147
Çakmakci Ö, Çakmakci T, Şensoy S. Effects of silver nanoparticles on growth parameters of radish (Raphanus sativus L. Var. Radicula). Grown under deficit irrigation. Current Trends in Natural Sciences, 2022;11(21), 37-44. https://doi.org/10.47068/ctns.2022.v11i21.004
Ürkmez H, Çakmakcı Ö. Effect of different doses of nano-silica applications on some growth parameters and nutrient uptake in arugula (Eruca sativa L.). Harran Tarım ve Gıda Bilimleri Dergisi, 2025;29(3), 469-476. https://doi.org/10.29050/harranziraat.1708633
Çakmakcı Ö, Şensoy S. Nano-silica modulates salt stress response in lettuce by enhancing growth, antioxidant activity, and mineral uptake. Plant, Soil and Environment, 2025;71(8). https://doi.org/10.17221/233/2025-pse
El-Kalliny AS, Abdel-Wahed MS, El-Zahhar AA, et al. Nanomaterials: a review of emerging contaminants with potential health or environmental impact. Discover Nano, 2023;18(1), 68. https://doi.org/10.1186/s11671-023-03787-8
Islam AN, Ridwan A, Neon AK, et al. Engineered Nanoparticles (ENPs) in Aquatic Environments and Soil-Plant Ecosystems: Transformation, Toxicity, and Environmental Challenge. 2025. https://doi.org/10.20944/preprints202501.1281.v1
Baun A, Hartmann NB, Grieger KD, et al. Setting the limits for engineered nanoparticles in European surface waters–are current approaches appropriate?. Journal of Environmental Monitoring, 2009;11(10), 1774-1781. https://doi.org/10.1039/B909730A
Singh S, Prasad SM, Bashri G. Fate and toxicity of nanoparticles in aquatic systems. Acta Geochimica, 2023;42(1), 63-76. https://doi.org/10.1007/s11631-022-00572-9
Strifling D, Dalton J, Folvarska V. Nanotechnology in Drinking Water Treatment Systems: Risk and Regulatory Compliance. Geo. Env't L. Rev., 2022;35, 359.
Salih HH, El Badawy AM, Tolaymat TM, et al. Removal of stabilized silver nanoparticles from surface water by conventional treatment processes. Advances in nanoparticles, 2019;8(2), 21
Nagar A, Pradeep T. Clean water through nanotechnology: needs, gaps, and fulfillment. ACS nano, 2020;14(6), 6420-6435. https://doi.org/10.1021/acsnano.9b01730
Dube E, Okuthe GE. Engineered nanoparticles in aquatic systems: Toxicity and mechanism of toxicity in fish. Emerging Contaminants, 2023;9(2), 100212. https://doi.org/10.1016/j.emcon.2023.100212
Sousa VS, Teixeira MR. Metal-based engineered nanoparticles in the drinking water treatment systems: A critical review. Science of the Total Environment, 2020;707, 136077. https://doi.org/10.1016/j.scitotenv.2019.136077
Sousa VS, Corniciuc C, Teixeira MR. The effect of TiO2 nanoparticles removal on drinking water quality produced by conventional treatment C/F/S. Water research, 2017;109, 1-12.
Taghipour S, Hosseini SM, Ataie-Ashtiani B. Engineering nanomaterials for water and wastewater treatment: review of classifications, properties and applications. New Journal of Chemistry, 2019;43(21), 7902-7927. DOI https://doi.org/10.1039/C9NJ00157C
Li J, Guo L, Cui H, et al. Research progress on uptake and transport of nanopesticides in plants. Chinese Bulletin of Botany, 2020;55(4), 513-528. https://doi.org/10.11983/CBB20008
Elhenawy S, Khraisheh M, AlMomani F, et al. Emerging nanomaterials for drinking water purification: A new era of water treatment technology. Nanomaterials, 2024;14(21), 1707. 10.3390/nano14211707
Klaine SJ, Alvarez PJJ, Batley GE, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental toxicology and chemistry, 2008;27(9), 1825-1851. https://doi.org/10.1897/08-090.1
Lowry GV, Gregory KB, Apte SC, et al. Transformations of nanomaterials in the environment. 2012. https://doi.org/10.1021/es300839e
Maurer-Jones MA, Gunsolus IL, Murphy CJ, et al. Toxicity of engineered nanoparticles in the environment. Analytical chemistry, 2013;85(6), 3036-3049. https://doi.org/10.1021/ac303636s
Hotze EM, Phenrat T, Lowry GV. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. Journal of environmental quality, 2010;39(6), 1909-1924. https://doi.org/10.2134/jeq2009.0462
Christian P, Von der Kammer F, Baalousha M, et al. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 2008;17(5), 326-343. https://doi.org/10.1007/s10646-008-0213-1
Fabrega J, Zhang R, Renshaw JC, et al. Impact of silver nanoparticles on natural marine biofilm bacteria. Chemosphere, 2011;85(6), 961-966. https://doi.org/10.1016/j.chemosphere.2011.06.066
Ilina SM, Ollivier P, Slomberg D, et al. Investigations into titanium dioxide nanoparticle and pesticide interactions in aqueous environments. Environmental Science: Nano, 2017;4(10), 2055-2065. https://doi.org/10.1039/C7EN00445A
Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environmental pollution, 2007;150(1), 5-22. https://doi.org/10.1016/j.envpol.2007.06.006