Yapay Zekânın Toprak Biliminde ve Sulama Programlamasında Entegrasyonu ve Kullanılabilirliğinin Araştırılması

Özet

Referanslar

Yerli C, Çakmakcı T, Sahin U, et al. Ağır metallerin toprak, bitki, su ve insan sağlığına etkileri. Türk Doğa ve Fen Dergisi. 2020;9(özel sayı): 103-114.

Tüfenkci Ş, Yerli C, Çakmakci, T. Topraktan CO2 salınımına bir bakış. In: Atılgan A, Erdal I, Boyaci S (eds.) Biyosistem Mühendisliği II. Akademisyen Yayınevi; 2021. p. 117-128.

Yerli C, Sahin, U. An assessment of the urban water footprint and blue water scarcity: A case study for Van (Turkey). Brazilian Journal of Biology. 2021;82: e249745.

Liakos KG, Busato P, Moshou DP. et al. Machine learning in agriculture: A review. Sensors. 2018;18(8): 2674.

McBratney AB, Santos MM, Minasny B. On digital soil mapping. Geoderma. 2003;117(1-2): 3-52.

Hengl T, Mendes de Jesus J, Heuvelink GB. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS one. 2017;12(2): e0169748.

Padarian J, Minasny B, McBratney AB. Machine learning and soil sciences: A review aided by machine learning tools. Soil. 2020;6(1): 35-52.

Gholizadeh A, Žižala D, Saberioon M. et al. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sensing of Environment. 2018;218: 89-103.

Rodell M, Barnoud A, Robertson FR. et al. An abrupt decline in global terrestrial water storage and its relationship with sea level change. Surveys in Geophysics. 2014;45(6): 1875-1902.

Farzamian M, Autovino D, Basile A. et al. Assessing the dynamics of soil salinity with time-lapse inversion of electromagnetic data guided by hydrological modelling. Hydrology and Earth System Sciences. 2021;25(3), 1509-1527.

Stefanidis S, Alexandridis V, Mallinis G.A. cloud-based mapping approach for assessing spatiotemporal changes in erosion dynamics due to biotic and abiotic disturbances in a Mediterranean Peri-Urban forest. Catena. 2022;218, 106564.

Ferreira LB. da Cunha FF. New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning. Agricultural Water Management. 2020;234: 106113.

Saggi MK, Jain S. A Survey Towards Decision Support System on Smart Irrigation Scheduling Using Machine Learning approaches: KS Saggi, S. Jain. Archives of Computational Methods İn Engineering. 2022;29(6), 4455-4478.

Mahmood MR, Matin MA, Goudos SK. et al. Machine learning for smart agriculture: a comprehensive survey. IEEE Transactions on Artificial Intelligence. 2023;5(6): 2568-2588.

Hengl T, Mendes de Jesus J, Heuvelink GB, et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS one. 2017;12(2): e0169748.

Sishodia RP, Ray RL, Singh SK. Applications of remote sensing in precision agriculture: A review. Remote Sensing. 2020;12(19), 3136.

Anderson MC, Cammalleri C, Hain CR. et al. Using a diagnostic soil-plant-atmosphere model for monitoring drought at field to continental scales. Procedia Environmental Sciences. 2013;19: 47-56.

Zeng Y, Verhoef A, Vereecken H. et al. Monitoring and modeling the soil‐plant system toward understanding soil health. Reviews of Geophysics. 2025;63(1): e2024RG000836.

Mi Q, Huo Z, Li M. et al. Development of a drought monitoring system for winter wheat in the huang-huai-hai region, china, utilizing a machine learning–physical process hybrid model. Agronomy. 2025;15(3): 696.

TÜBİTAK. Hassas tarım teknolojileri ile sürdürülebilir su kullanımı pilot proje sonuç raporu. Ankara: TÜBİTAK. 2022.

Yayınlanan

2 Ocak 2026

Lisans

Lisans