Yenilikçi Besleme ve İşletme Stratejileriyle Sürdürülebilir Biyogaz Reaktör Tasarımı
Özet
Bu bölüm, biyogaz üretiminde toplam katı madde (TKM) oranının kritik rolünü ve sürdürülebilir reaktör tasarım stratejilerini kapsamlı bir şekilde ele almaktadır. Islak (<%15 TKM), yarı-kuru (%15-20 TKM) ve kuru (>%20 TKM) anaerobik çürütme sistemlerinin karşılaştırmalı analizi, her bir yaklaşımın avantajları, sınırlamaları ve uygulama alanlarını ortaya koymaktadır. Biyogaz geri sirkülasyonu, döner reaktör sistemleri ve leach-bed konfigürasyonları gibi yenilikçi teknolojiler detaylı olarak incelenmektedir. Esnek besleme stratejileri, mikrobiyal topluluk dinamikleri ve talebe duyarlı enerji üretimi gibi güncel konular, literatürdeki deneysel bulgularla desteklenerek sunulmaktadır. Bölüm, dairesel ekonomi prensipleri çerçevesinde biyogaz tesislerinin entegre biyo-rafineri modeline dönüşümünü vurgulayarak, gelecekteki araştırma ve uygulama alanlarına yönelik somut öneriler getirmektedir.
Referanslar
Weiland P. Biogas production: current state and perspectives. Applied Microbiology and Biotechnology. 2010;85(4):849–860. doi:10.1007/s00253-009-2246-7
Mata-Alvarez J, Macé S, Llabrés P. Anaerobic digestion of organic solid wastes: an overview of research achievements and perspectives. Bioresource Technology. 2000;74(1):3–16. doi:10.1016/S0960-8524(00)00023-7
Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews. 2011;15(1):821–826. doi:10.1016/j.rser.2010.07.042
Chiumenti A, da Borso F, Limina S. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: efficiency and comparison with wet fermentation. Waste Management. 2018;71:704–710. doi:10.1016/j.wasman.2017.03.046
Wang Z, Jiang Y, Wang S, et al. Impact of total solids content on anaerobic co-digestion of pig manure and food waste: insights into shifting of the methanogenic pathway. Waste Management. 2020;114:96–106. doi:10.1016/j.wasman.2020.06.048
Rapport J, Zhang R, Jenkins BM, Williams RB. Current anaerobic digestion technologies used for treatment of municipal organic solid waste. California Integrated Waste Management Board Contract. 2008;IWM-C2023.
Batstone DJ, Keller J, Angelidaki I, et al. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science and Technology. 2002;45(10):65–73. doi:10.2166/wst.2002.0292
Vavilin VA, Fernandez B, Palatsi J, Flotats X. Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Management. 2008;28(6):939–951. doi:10.1016/j.wasman.2007.03.028
Abbassi-Guendouz A, Brockmann D, Trably E, et al. Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresource Technology. 2012;111:55–61. doi:10.1016/j.biortech.2012.01.174
Duan N, Dong B, Wu B, Dai X. High-solid anaerobic digestion of sewage sludge under mesophilic conditions: feasibility study. Bioresource Technology. 2012;104:150–156. doi:10.1016/j.biortech.2011.10.090
Nges IA, Liu J. Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions. Renewable Energy. 2010;35(10):2200–2206. doi:10.1016/j.renene.2010.02.022
Jiang Y, Dennehy C, Lawlor PG, et al. Exploring roles of microbes in dry co-digestion of food waste and pig manure using high-throughput 16S rRNA gene sequencing. Biotechnology for Biofuels. 2019;12:5. doi:10.1186/s13068-018-1339-4
Ward AJ, Hobbs PJ, Holliman PJ, Jones DL. Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology. 2008;99(17):7928–7940. doi:10.1016/j.biortech.2008.02.044
Zhao W, Zhou CY, Zhang J, Wang DQ. High-solids anaerobic digestion of cassava pulp in semi-continuous bioreactors. BioResources. 2021;16(4):6723–6736. doi:10.15376/biores.16.4.6723-6736
Bollon J, Benbelkacem H, Gourdon R, Buffière P. Measurement of diffusion coefficients in dry anaerobic digestion media. Chemical Engineering Science. 2013;89:115–119. doi:10.1016/j.ces.2012.11.036
Forster-Carneiro T, Pérez M, Romero LI. Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresource Technology. 2008;99(15):6994–7002. doi:10.1016/j.biortech.2008.01.018
Pan X, Wang Y, Xie H, et al. Performance of a novel rotating bioreactor for dry anaerobic digestion: efficiency and mechanism vs wet fermentation. Energy. 2022;254:124404. doi:10.1016/j.energy.2022.124404
Karthikeyan OP, Visvanathan C. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Reviews in Environmental Science and Bio/Technology. 2013;12(3):257–284. doi:10.1007/s11157-012-9304-9
André L, Pauss A, Ribeiro T. Solid anaerobic digestion: state-of-art, scientific and technological hurdles. Bioresource Technology. 2018;247:1027–1037. doi:10.1016/j.biortech.2017.09.003
Gómez D, Ramos-Suárez JL, Fernández B, et al. Modified plug-flow anaerobic digester for biogas production from animal manures. Energies. 2019;12(13):2628. doi:10.3390/en12132628
Fagbohungbe MO, Dodd IC, Herbert BMJ, et al. High solid anaerobic digestion: operational challenges and possibilities. Environmental Technology & Innovation. 2015;4:268–284. doi:10.1016/j.eti.2015.09.003
Lindmark J, Eriksson P, Thorin E. Effects of different mixing intensities in anaerobic digestion of OFMSW. Waste Management. 2014;34(8):1391–1397. doi:10.1016/j.wasman.2014.02.018
Angelidaki I, Ahring BK. Thermophilic anaerobic digestion of livestock waste: effect of ammonia. Applied Microbiology and Biotechnology. 1993;38(4):560–564. doi:10.1007/BF00242955
Arelli V, Begum S, Anupoju GR, et al. Dry anaerobic co-digestion of food waste and cattle manure. Bioresource Technology. 2018;253:273–280. doi:10.1016/j.biortech.2018.01.050
Rasit N, Wan Ab Karim Ghanib WA, Che Haruna MH, et al. Feeding frequency efficacy on biogas yield in oily substrate digestion. Water Science and Technology. 2024;89(10):2796–2811. doi:10.2166/wst.2024.153
Koch K, Lübken M, Gehring T, et al. Biogas from grass silage: measurements and modeling with ADM1. Bioresource Technology. 2010;101(21):8158–8165. doi:10.1016/j.biortech.2010.06.009
Joseph OO, Lim JW, Chong S, et al. Feedstocks, production processes, and yields for biodiesel generations. Environmental Engineering Research. 2020;25(3):316–328. doi:10.4491/eer.2019.138
Labatut RA, Angenent LT, Scott NR. Biochemical methane potential of complex organic substrates. Bioresource Technology. 2011;102(3):2255–2264. doi:10.1016/j.biortech.2010.10.035
Cavaleiro AJ, Pereira MA, Alves MM. Methane production from long chain fatty acid effluents. Bioresource Technology. 2008;99(10):4086–4095. doi:10.1016/j.biortech.2007.10.005
Ning Z, Zhang H, Li W, et al. Anaerobic digestion of lipid-rich swine slaughterhouse waste. Bioresource Technology. 2018;269:426–433. doi:10.1016/j.biortech.2018.08.070
Zhang C, Su H, Baeyens J, Tan T. Reviewing food waste anaerobic digestion for biogas. Renewable and Sustainable Energy Reviews. 2014;38:383–392. doi:10.1016/j.rser.2014.05.038
Molaey R, Bayrakdar A, Sürmeli RÖ, Çalli B. Selenium supplementation mitigating ammonia inhibition in chicken manure digestion. Biomass and Bioenergy. 2018;108:439–446. doi:10.1016/j.biombioe.2017.10.050
Molaey R, Bayrakdar A, Sürmeli RÖ, Çalli B. Trace element supplementation in chicken manure digestion. Journal of Cleaner Production. 2018;181:794–800. doi:10.1016/j.jclepro.2018.01.264
Zhang L, Lee YW, Jahng D. Anaerobic co-digestion of food waste and piggery wastewater: role of trace elements. Bioresource Technology. 2011;102(8):5048–5059. doi:10.1016/j.biortech.2011.01.082
Guo X, Wang C, Sun F, et al. Microbial characteristics in thermophilic vs mesophilic digesters. Bioresource Technology. 2014;152:420–428. doi:10.1016/j.biortech.2013.11.012
Silvey P, Blackall L, Pullammanappallil P. Microbial ecology of leach-bed anaerobic digestion. In: Proceedings of the Second International Symposium on Anaerobic Digestion of Solid Wastes; 1999. p.307–314.
Lethomäki A. Biogas Production from Energy Crops and Crop Residues. University of Jyväskylä; 2006.
Silva I, Lapa N, Ribeiro H, Duarte E. Bioreactor feeding strategies to improve biogas production. Journal of Ecological Engineering. 2024;25(9):252–259. doi:10.12911/22998993/190924
Mulat DG, Jacobi HF, Feilberg A, et al. Changing feeding regimes for flexible biogas production. Applied and Environmental Microbiology. 2016;82(2):438–449. doi:10.1128/AEM.02320-15
De Vrieze J, Verstraete W, Boon N. Pulse feeding induces functional stability in anaerobic digestion. Microbial Biotechnology. 2013;6(4):414–424. doi:10.1111/1751-7915.12025
Szarka N, Scholwin F, Trommler M, et al. Flexible, demand-oriented biogas-based power supply. Energy. 2013;61:18–26. doi:10.1016/j.energy.2012.12.053
Hahn H, Krautkremer B, Hartmann K, Wachendorf M. Concepts for demand-driven biogas supply. Renewable and Sustainable Energy Reviews. 2014;29:383–393. doi:10.1016/j.rser.2013.08.085
Sundberg C, Al-Soud WA, Larsson M, et al. Pyrosequencing analyses of microbial richness in 21 biogas digesters. FEMS Microbiology Ecology. 2013;85(3):612–626. doi:10.1111/1574-6941.12148
Li D, Liu S, Mi L, et al. Co-digestion of rice straw and pig manure under different OLRs. Bioresource Technology. 2015;187:120–127. doi:10.1016/j.biortech.2015.03.040
Lee E, Bittencourt P, Casimir L, et al. High-solids anaerobic co-digestion of food, yard waste and sludge. Waste Management. 2020;95:432–439. doi:10.1016/j.wasman.2019.06.031
Agyeman FO, Tao W. Co-digestion of food waste and dairy manure: impacts of particle size. Journal of Environmental Management. 2014;133:268–274. doi:10.1016/j.jenvman.2013.12.016
Li Y, Zhang R, Liu G, et al. Methane potential and kinetics of different organic substrates. Bioresource Technology. 2014;149:565–569. doi:10.1016/j.biortech.2013.09.063
Vieitez E, Ghosh S. Biogasification of solid wastes by two-phase anaerobic fermentation. Biomass and Bioenergy. 1999;16(5):299–309. doi:10.1016/S0961-9534(99)00009-5
De Baere L. Anaerobic digestion of solid waste: state-of-the-art. Water Science and Technology. 2000;41(3):283–290. doi:10.2166/wst.2000.0045
Dong L, Zhenhong Y, Yongming S, et al. Hydrogen production from OFMSW by anaerobic mixed cultures. International Journal of Hydrogen Energy. 2010;34(2):812–820. doi:10.1016/j.ijhydene.2008.11.031
Xu SY, Karthikeyan OP, Selvam A, Wong JWC. Microbial community and enzyme activities in leach bed reactors. Bioresource Technology. 2014;168:41–48. doi:10.1016/j.biortech.2014.05.009
Karakashev D, Batstone DJ, Angelidaki I. Influence of environmental conditions on methanogenic composition. Applied and Environmental Microbiology. 2005;71(1):331–338. doi:10.1128/AEM.71.1.331-338.2005
Li Y, Zhang R, Chen C, et al. Co-digestion of corn stover and chicken manure under wet, hemi-solid and solid conditions. Bioresource Technology. 2013;149:406–412. doi:10.1016/j.biortech.2013.09.091
Dennehy C, Lawlor PG, Jiang Y, et al. Greenhouse gas emissions from pig manure management: critical analysis. Frontiers in Environmental Science and Engineering. 2017;11(3):11. doi:10.1007/s11783-017-0942-6
Amon T, Amon B, Kryvoruchko V, et al. Methane production through anaerobic digestion of energy crops. Bioresource Technology. 2007;98(17):3204–3212. doi:10.1016/j.biortech.2006.07.007
Möller K, Müller T. Effects of anaerobic digestion on digestate nutrient availability and crop growth. Engineering in Life Sciences. 2012;12(3):242–257. doi:10.1002/elsc.201100085