Yapışkan Dışkı (Sticky Droppings)
Özet
Kanatlılarda yapışkan dışkı, modern endüstriyel üretimde sıklıkla karşılaşılan ve ekonomik kayıplara neden olan önemli bir metabolik durumdur. Yapışkan dışkı, yalnızca basit bir semptom olmayıp, farklı nedenlere bağlı olarak gelişen fizyolojik, beslenme ve çevresel faktörlerin bir sonucudur. Yapışkan dışkı, normal dışkı kıvamından sapma göstererek yapışkan, jelimsi veya aşırı nemli bir hal alan dışkı durumu olarak tanımlanmaktadır. Özellikle civciv ve piliçlerde yoğun olarak görülen bu durum, dışkının vent bölgesine yapışmasıyla karakterize olup tüy kirliliği, altlık neminde artış, amonyak emisyonu, deri ve ayak lezyonları gibi problemlere yol açmaktadır. Yapışkan dışkının oluşumunda en önemli etkenlerden biri de yem kaynaklı nişasta tabiatında olmayan polisakkarit (NSP) fazlalığıdır. NSP’lerin bağırsakta su tutucu özellikleri, sindirim viskozitesini artırarak dışkı kıvamını bozmakta; enzim yetersizliği, mikrobiyal dengesizlik, mikotoksinler ve çevresel stres faktörleri bu tabloyu şiddetlendirmektedir. Bu metabolik durumun anlaşılması, modern kanatlı üretiminde sürdürülebilir ve verimli üretim sistemlerinin geliştirilmesi açısından kritik önem taşımaktadır. Çünkü, yapışkan dışkı kanatlılarda hem üretim verimliliğini hem de hayvan refahını olumsuz etkilemekte ayrıca üretilen hayvansal ürünlerde gıda güvenliği riskleri açısından önem taşımaktadır. Bu bölümde, incelenen güncel bilimsel literatürler ışığında yapışkan dışkının genel semptomları, patogenezi, metabolik değişiklikleri, sebepleri ve koruyucu yaklaşımları hakkında stratejiler sunulmuştur.
Referanslar
Perera WNU, Abdollahi MR, Zaefarian F,et al. Barley, an undervalued cereal for poultry diets: limitations and opportunities. Animals; 2022; 12(19), 2525, 1-35. https://doi.org/10.3390/ani12192525
Choct M, Hughes RJ, Bedford MR. Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat-based diets. Poultry Science; 2008; 87(10), 2052-2063.
Slominski BA, Recent advances in research on enzymes for poultry diets. Poultry Science; 2011; 90 (12), 2013-2023. ISSN 0032-5791, https://doi.org/10.3382/ps.2011-01372
Washington State University Extension 2010; Sticky droppings: a feed-related poultry problem. Erişim: https://wpcdn.web.wsu.edu/wp-extension/uploads/sites/2093/2023/06/StickyDroppings_WSUFS002E.pdf
Jacob JP, Pescatore AJ. Barley β-glucan in poultry diets. Annals of Translational Medicine; 2014; 2(2), 20, 1-7. doi: 10.3978/j.issn.2305-5839.2014.01.02.
Svihus B. Function of the digestive system. Journal of Applied Poultry Research; 2014; 23(2), 306-314.
Ducatelle R, Goossens E, De Meyer F, et al. Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Veterinary Research; 2018; 49(1), 43. https://doi.org/10.1186/s13567-018-0538-6
Raza A, Bashir S, Tabassum R. An update on pathogenicity, diagnosis, prevention, and control of coccidiosis in poultry. International Journal of Current Microbiology and Applied Sciences; 2019; 8(3), 1602-1611.
Ahmed RM, Rymer C, Junipper DJ. A review of the aetiology, prevention and control of foot pad dermatitis in turkeys and broilers. Heliyon; 2023; https://doi.org/10.2139/ssrn.4574909
Jha R, Singh AK, Yadav S,et al. Early nutrition programming (in ovo and post-hatch feeding) as a strategy to modulate gut health of poultry. Frontiers Veterinary Science; 2019; 6, 82. doi: 10.3389/fvets.2019.00082
Summers J, Adams CE, Leeson S. Metabolic disorders of poultry. International Journal of Veterinary Science; 2022; 29. https://doi.org/10.3382/ps.2011-01372.
Kogut MH, Arsenault RJ. Gut health: the new paradigm in food animal production. Frontiers Veterinary Science; 2016; 3,71. doi: 10.3389/fvets.2016.00071
Aderibigbe A, Cowieson A, Sorbara JO, et al. Intestinal starch and energy digestibility in broiler chickens fed diets supplemented with α-amylase. Poultry Science; 2020; 99(11), 5907-5914. https://doi.org/10.1016/j.psj.2020.08.036.
Shehata AM, Paswan VK, Attia YA, et al. Managing gut microbiota through in ovo nutrition influences early-life programming in broiler chickens. Animals; 2021; 11(12):3491. https://doi.org/10.3390/ani11123491
Proszkowiec-Weglarz M, Miska KB, Ellestad LE, et al. Delayed access to feed early post-hatch affects the development and maturation of gastrointestinal tract microbiota in broiler chickens. BMC Microbiology; 2022; 24; 22(1): 206. doi: 10.1186/s12866-022-02619-6.
Yehia N, Salem HM, Yasser M, et al. Common viral and bacterial avian respiratory infections: an updated review. Poultry Science; 2023; 102(5),102553. https://doi.org/10.1016/j.psj.2023.102553.
Montagne L, Pluske JR, Hampson DJ. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology; 2003; 108(1-4), 95-117. https://doi.org/10.1016/S0377-8401(03)00163-9
Tancharoenrat P, Ravindran V, Zaefarian F, et al. Digestion of fat and fatty acids along the gastrointestinal tract of broiler chickens. Poultry Science; 2014; 93(2), 371-379. https://doi.org/10.3382/ps.2013-03344
Mozuriene E, Mockus E, Klupsaite D, et al. Physical and chemical characteristics of droppings as sensitive markers of chicken health status. Animals; 2024; 14, 1389. https://doi.org/10.3390/ ani14091389
Ouachem D, Kaboul N, Meredef A, et al. Effects of clay on performance, moisture of droppings and health status of poultry: an overview. World’s Poultry Science Journal; 2015; 71(1):184-189. doi:10.1017/S004393391500015X
Hofacre CL, Smith JA, Mathis GF. An optimist's view on limiting necrotic enteritis and maintaining broiler gut health and performance in today's marketing, food safety, and regulatory climate. Poultry Science; 2018; 97(6), 1929-1933. https://doi.org/10.3382/ps/pey082.
Nguyen HT, Wu SB, Bedford MR, et al. Dietary soluble non-starch polysaccharide level and xylanase influence the gastrointestinal environment and nutrient utilisation in laying hens. British Poultry Science; 2021; 63(3), 340-350. https://doi.org/10.1080/00071668.2021.2003754
Józefiak D, Rutkowski A, Kaczmarek S, et al. Effect of β -glucanase and xylanase supplementation of barley- and rye-based diets on caecal microbiota of broiler chickens. British Poultry Science; 2010; 51(4), 546-557. https://doi.org/10.1080/00071668.2010.507243
Dunlop MW, Moss AF, Groves PJ, et al. The multidimensional causal factors of ‘wet litter’ in chicken-meat production. Science of The Total Environment; 2016; 562, 766-776, https://doi.org/10.1016/j.scitotenv.2016.03.147.
Morgan NK, Keerqin C, Wallace A, et al. Effect of arabinoxylo-oligosaccharides and arabinoxylans on net energy and nutrient utilization in broilers. Animal Nutrition; 2019; 5(1), 56-62, https://doi.org/10.1016/j.aninu.2018.05.001.
Sanchez J, Barbut S, Patterson R, et al. Impact of fiber on growth, plasma, gastrointestinal and excreta attributes in broiler chickens and turkey poults fed corn- or wheat-based diets with or without multienzyme supplement. Poultry Science; 2021; 100(8):101219. doi: 10.1016/j.psj.2021.101219.
Rzeznitzeck J, Hoerr FJ, Rychlik I, et al. Morphology, microbiota, and metabolome along the intestinal tract of female turkeys. Poultry Science; 2022; 101(11):102046. doi: 10.1016/j.psj.2022.102046.
Attia YA, Al-Khalaifah HS, Alqhtani AH, et al. The impact of multi-enzyme fortification on growth performance, intestinal morphology, nutrient digestibility, and meat quality of broiler chickens fed a standard or low-density diet. Frontiers in Veterinary Science; 2022; 9,1012462. doi: 10.3389/fvets.2022.1012462
Hsu JC, Lu TW, Chiou PWS, et al. Effects of different sources of dietary fibre on growth performance and apparent digestibility in geese. Animal Feed Science and Technology; 1996; 60(1,2), 93-102. https://doi.org/10.1016/0377-8401(95)00918-3.
Han HY, Zhang KY, Ding XM, et al. Effect of dietary fiber levels on performance, gizzard development, intestinal morphology, and nutrient utilization in meat ducks from 1 to 21 days of age. Poultry Science; 2017; 96(12), 4333-4341. https://doi.org/10.3382/ps/pex268
Wang X, Li D, Xu Y, et al. Xylanase supplement enhances the growth performance of broiler by modulating serum metabolism, intestinal health, short-chain fatty acid composition, and microbiota. Animals; 2024; 14(8),1182. https://doi.org/10.3390/ani14081182
Kim E, Morgan NK, Moss AF, et al. The flow of non-starch polysaccharides along the gastrointestinal tract of broiler chickens fed either a wheat- or maize-based diet. Animal Nutrition; 2021; 14(9), 138-142. doi: 10.1016/j.aninu.2021.11.004.
Choct M. Enzymes for the feed industry: past, present and future. World's Poultry Science Journal; 2006; 62(1), 5-16. https://doi.org/10.1079/WPS200480
Sugiharto S, Raza, MA. Optimization of poultry physiological condition in the post-antibiotic era through nutritional intervention - A review. Jurnal Medik Veteriner; 2024; 7(2), 388-406. https://doi.org/10.20473/jmv.vol7.iss2.2024.388-406
Melaku M, Zhong R, Han H, et al. Butyric and citric acids and their salts in poultry nutrition: effects on gut health and intestinal microbiota. International Journal of Molecular Sciences; 2021; 22(19), 10392. https://doi.org/10.3390/ijms221910392
Morgan N, Bhuiyan MM, Hopcroft R. Non-starch polysaccharide degradation in the gastrointestinal tract of broiler chickens fed commercial-type diets supplemented with either a single dose of xylanase, a double dose of xylanase, or a cocktail of non-starch polysaccharide-degrading enzymes. Poultry Science; 2022; 101(6),101846. doi: 10.1016/j.psj.2022.101846.
Biagini L, Galosi L, Roncarati A, et al. The role of nutraceuticals and phytonutrients in chickens gastrointestinal diseases. Animals; 2022; 12(7):892. https://doi.org/10.3390/ani12070892
Cardoso V, Fernandes EA, Santos HMM, et al. Variation in levels of non-starch polysaccharides and endogenous endo-1,4-β-xylanases affects the nutritive value of wheat for poultry. British Poultry Science; 2018; 59(2), 218-226. doi: 10.1080/00071668.2018.1423674.
Ravindran V. Feed enzymes: the science, practice, and metabolic realities. Journal of Applied Poultry Research; 2013; 22(3), 628-636. https://doi.org/10.3382/japr.2013-00739
Van Immerseel F, De Buck J, Pasmans F, et al. Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathology; 2004; 33(6), 537-549. https://doi.org/10.1080/03079450400016162
Crhanova M, Hradecka H, Faldynova M, et al. Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar enteritidis infection. Infection and Immunity; 2011; 79(7), 2755-2763. https://doi.org/10.1128/IAI.01375-10
Aruwa CE, Pillay C, Nyaga MM. Poultry gut health-microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. Journal of Animal Science Biotechnology; 2021; 12, 119. https://doi.org/10.1186/s40104-021-00640-9
Yegani M, Korver DR. Factors affecting intestinal health in poultry. Poultry Science; 2008; 87, 2052–2063. doi:10.3382/ps.2008-00091
Van der Hoeven-Hangoor E, Rademaker CJ, Paton ND, et al. Evaluation of free water and water activity measurements as functional alternatives to total moisture content in broiler excreta and litter samples. Poultry Science; 2014; 93(7), 1782-1792. https://doi.org/10.3382/ps.2013-03776.
Apajalahti JHA, Kettunen A, Bedford MR, et al. Percent G+C profiling accurately reveals diet-related diffrences in the gastrointestinal microbial community of broiler chickens. Applied and Environmental Microbiology; 2001; 67, 5656-5667.
Apajalahti JHA, Kettunen A, Graham H. Characteristics of the gastrointestinal microbial communities with special reference to the chicken. World's Poultry Science Journal; 2004; 60, 223-232.
Hume ME, Kubena LF, Edrington TS, et al. Poultry digestive microflora biodiversity as indicated by denaturing gradient gel electrophoresis. Poultry Science; 2003; 82, 1100-1107.
Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition; 1995; 125, 1401-1412.
Gibson GR. Dietary modulation of the human gut microflora using prebiotics. British Journal of Nutrition; 1998; 80, 209-212.
Mcbain AJ, Macfarlane GT. Modulation of genotoxic enzyme activities by nondigestible oligosaccharide metabolism in in-vitro human gut bacterial ecosystems. Journal of Medical Microbiology; 2001; 50, 833-842.
Glunder G. Influence of diet on the occurrence of some bacteria in the intestinal flora of wild and pet birds. Deutsche tierarztliche Wochenschrift; 2002; 109, 266-270.
Schiffrin EJ, Blum S. Interactions between the microbiota and the intestinal mucosa. European Journal of Clinical Nutrition; 2002; 56 (3), 60-64.
Wang W, Li Z, Han Q, et al. Effects of dietary non-starch polysaccharides on intestinal morphology, barrier function, and gut microbiota in broilers. Poultry Science; 2019; 98(8), 3363–3373. https://doi.org/10.3382/ps/pez087
Bedford MR, Cowieson AJ. Exogenous enzymes and their effects on intestinal microbiology and function in poultry. Animal Feed Science and Technology; 2020; 250, 114356. https://doi.org/10.1016/j.anifeedsci.2019.114356
Khattak FM, Pasha TN, Hayat Z, et al. Enzymes in poultry nutrition. Journal of Animal and Plant Sciences; 2006; 16(1-2), 1-7.
Yegani M, Korver DR. Effects of corn source and exogenous enzymes on growth performance and nutrient digestibility in broiler chickens. Poultry Science; 2013; 92(5), 1208-1220. https://doi.org/10.3382/ps.2012-02390.
Lemme A, Ravindran V, Bryden WL. Ileal digestibility of amino acids in feed ingredients for broilers. World's Poultry Science Journal; 2004; 60(4), 423-438. https://doi.org/10.1079/WPS20040032
Huang L, Xue M, Zhao X, et al. T-2 toxin induces intestinal oxidative stress and disrupts barrier function in broilers via inflammatory pathways. Toxins; 2023; 15(2), 104–120. https://doi.org/10.3390/toxins15020104
Poorghasemi M, Seidavi A, Qotbi AA, et al. Influence of dietary fat source on growth performance responses and carcass traits of broiler chicks. Asian-Australas Journal of Animal Science; 2013; 26(5), 705-710. doi: 10.5713/ajas.2012.12633.
Moradi S, Moradi A, Atabaigi Elmi V, et al. Influence of grain type and fat source on performance, nutrient utilization, and gut properties in broilers fed pelleted diets. Poultry Science; 2024; 103(10), 104093. ISSN 0032-5791, https://doi.org/10.1016/j.psj.2024.104093.
Jouany JP. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Animal Feed Science and Technology; 2007; 137(3-4), 342-362. https://doi.org/10.1016/j.anifeedsci.2007.06.009
Lara LJ, Rostagno MH. Impact of heat stress on poultry production. Animals; 2013; 3(2), 356-369. https://doi.org/10.3390/ani3020356
Engberg RM, Hedemann MS, Steenfeldt S, et al. Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poultry Science; 2004; 83, 925-938.
64.Timbermont L, Haesebrouck F, Ducatelle R, et al. Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathology; 2011; 40(4), 341-347. https://doi.org/10.1080/03079457.2011.590967
Shojadoost B, Yitbarek A, Alizadeh M, et al. Centennial Review: Effects of vitamins A, D, E, and C on the chicken immune system. Poultry Science; 2021;100(4): 1-15. ISSN 0032-5791, https://doi.org/10.1016/j.psj.2020.12.027.
Havenstein GB, Ferket PR, Qureshi MA. Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science; 2003; 82(10), 1500-1508. https://doi.org/10.1093/ps/82.10.1500
Klasing KC. Nutrition and the immune system. British Poultry Science; 2007; 48(5), 525-537. https://doi.org/10.1080/00071660701671336
Tona K, Voemesse K, N'nanlé O, et al. Chicken incubation conditions: role in embryo development, physiology and adaptation to the post-hatch environment. Frontiers in Physiology; 2022; May 23(13), 895854. doi: 10.3389/fphys.2022.895854.
Cowieson AJ, Ravindran V. Effect of exogenous enzymes in maize-based diets varying in nutrient density for young broilers: growth performance and digestibility of energy, minerals and amino acids. British Poultry Science; 2008; 49(1), 37-44. https://doi.org/10.1080/00071660701812989
Hussain M, Aizpurua O, Pérez de Rozas A, et al. Positive impact of early-probiotic administration on performance parameters, intestinal health and microbiota populations in broiler chickens. Poultry Science; 2024; 103(12), 104401. https://doi.org/10.1016/j.psj.2024.104401.
Iji PA, Tivey DR. The use of oligosaccarides in broiler diets. Proceedings of 12th European Symposium on Poultry Nutrition; 1999; 193-199. Netherlands.
Apajalahti J, Vienola K. Interaction between chicken intestinal microbiota and protein digestion. Animal Feed Science and Technology; 2016; 221, 323-330. https://doi.org/10.1016/j.anifeedsci.2016.05.004
De Jong IC, Gunnink H, Van Harn J. Wet litter not only induces footpad dermatitis but also reduces overall welfare, technical performance, and carcass yield in broiler chickens. Journal of Applied Poultry Research; 2014; 23(1), 51-58. https://doi.org/10.3382/japr.2013-00803
Bedford MR, Cowieson AJ. Exogenous enzymes and their effects on intestinal microbiology. Animal Feed Science and Technology; 2012; 173(1-2), 76-85. https://doi.org/10.1016/j.anifeedsci.2011.12.018
Patterson JA, Burkholder KM. Application of prebiotics and probiotics in poultry production. Poultry Science; 2003; 82(4), 627-631. https://doi.org/10.1093/ps/82.4.627
Dhama K, Latheef SK, Mani S, et al. Multiple beneficial applications and modes of action of herbs in poultry health and production-A review. International Journal of Pharmacology; 2015; 11(2), 152-176. https://doi.org/10.3923/ijp.2015.152.176
Craig AD, Khattak F, Hastie P, et al. Xylanase and xylo- oligosaccharide prebiotic improve the growth performance and concentration of potentially prebiotic oligosaccharides in the ileum of broiler chickens. British Poultry Science; 2019; 61(1), 70–78. https://doi.org/10.1080/00071668.2019.1673318].
Dibner JJ, Buttin P. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. Journal of Applied Poultry Research; 2002; 11(4), 453-463. https://doi.org/10.1093/japr/11.4.453
Windisch W, Schedle K, Plitzner C, et al. Use of phytogenic products as feed additives for swine and poultry. Journal of Animal Science; 2008; 86(14_suppl), 140-148.
https://doi.org/10.2527/jas.2007-0459
Sklan D. Development of the digestive tract of poultry. World's Poultry Science Journal; 2001; 57(4), 415-428. https://doi.org/10.1079/WPS20010030
Newell DG, Koopmans M, Verhoef L, et al. Food-borne diseases—the challenges of 20 years ago still persist while new ones continue to emerge. International Journal of Food Microbiology; 2010; 139, 3-15. https://doi.org/10.1016/j.ijfoodmicro.2010.01.021
Butterworth A, De Jong IC, Keppler C. Welfare quality® assessment protocol for poultry (broilers, laying hens). 2016; Welfare Quality® Consortium.
Wideman N, O'Bryan CA, Crandall PG. Factors affecting poultry meat colour and consumer preferences–A review. World's Poultry Science Journal; 2016; 72(2), 353-366. https://doi.org/10.1017/S0043933916000015
Borda-Molina D, Vital M, Sommerfeld V, et al. Insights into broilers' gut microbiota fed with phosphorus, calcium, and phytase supplemented diets. Frontiers in Microbiology; 2016; 7, 2033. https://doi.org/10.3389/fmicb.2016.02033
Aggrey SE, Karnuah AB, Sebastian B, et al. Genetic properties of feed efficiency parameters in meat-type chickens. Genetics Selection Evolution; 2010; 42(1), 25. https://doi.org/10.1186/1297-9686-42-25.