Mineral Yetersizliği / Toksisitesi

Özet

Günümüzde kanatlı yetiştiriciliğinde yüksek performans özelliklerine sahip genotipler kullanılmaktadır. Yoğun seleksiyon ve genetik ıslah programları aracılığıyla geliştirilen bu genotiplerin genetik potansiyellerini gerçekleştirebilmeleri için modern yönetimsel uygulamalar ile hassas besleme teknikleri giderek önem kazanmaktadır. Bu kapsamda, normal fizyolojik fonksiyonların devam ettirilmesi, büyüme ve üremenin sağlanması, verimliliğin ve ürün kalitesinin artırılması ve genel sağlığın korunmasında önemli görevlere sahip olan mineral maddeler kanatlı hayvanların beslenmesinde hayati öneme sahiptir. Organizmadaki konsantrasyonları dikkate alındığında mineral maddeler; makro ve mikro mineraller olmak üzere iki grupta incelenmektedir. Kalsiyum ve fosfor iskelet gelişiminin sağlanması ve yumurta kabuğu oluşumu için hayati önem taşırken, mikro mineraller enzimatik fonksiyonların tamamlanması, immünitenin desteklenmesi ve üreme performansının artırılmasında önemli görevler üstlenmektedir. Mineral alımındaki yetersizlikler, dengesizlikler veya aşırı tüketim seviyeleri büyümenin baskılanması, verimin düşmesi gibi çok sayıda olumsuz durumun görülmesine neden olmaktadır. Bu bölümde, kanatlı beslemede mineral maddelerin fonksiyonları, yetersizliği, toksisitesi ve bu konularla ilgili son yıllardaki mevcut yaklaşımlar ve koruyucu yöntemler hakkında bilgi verilmiştir.

Referanslar

Park SY, Birkhold SG, Kubena LF, et al. Review on the role of dietary zinc in poultry nutrition, immunity, and reproduction. Biological Trace Element Research; 2004; 101: 147-163. doi:10.1385/BTER:101:2:147

Goff JP. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science; 2018; 101: 2763-2813.doi:10.3168/jds.2017-13112

Weyh C, Krüger K, Peeling P, et al. The role of minerals in the optimal functioning of the ımmune system. Nutrients; 2022; 14: 644. doi:10.3390/nu14030644

Suttle NF. Mineral nutrition of livestock. CAB International, Oxfordshire, United Kingdom; 2010.

Yang K, Hu S, Mu R, et al. Effects of different patterns and sources of trace elements on laying performance, tissue mineral deposition, and fecal excretion in laying hens. Animals; 2021; 11: 1164. doi:10.3390/ani11041164

Santos MJB, Ludke MCMM, Silva LM, et al. Complexed amino acid minerals vs. bis-glycinate bound minerals: impact on the performance of old laying hens. Animal Nutrition; 2024;16: 395-408. doi:10.1016/ j.aninu.2023.11.006

Mc Dowell LR. Minerals in animal and human nutrition. Elsevier Health Sciences, 2003.

Underwood EJ. Trace elements in human and animal nutrition. Academic Press, London; 1977.

Henry PR, Miles RD. Heavy metals–vanadium in poultry. Ciência Animal Brasileira; 2006; 2(1): 11-26.

Mohajane C, Manjoro M. Sediment-associated heavy metal contamination and potential ecological risk along an urban river in South Africa. Heliyon; 2022; e12499. doi:10.1016/j.heliyon.2022.e12499

Kumar N, Chandan NK, Bhushan S, et al. Health risk assessment and metal contamination in fish, water and soil sediments in the East Kolkata wetlands, India, Ramsar site. Scientific Reports; 2023; 13: 1546. doi: 10.1038/s41598-023-28801-y

NRC (National Research Council). Nutrient Requirements of Poultry, The National Academy Press, Washington, DC, USA; 1994.

Veum TL. Phosphorus and calcium nutrition and metabolism. In: Vitti DMSS, Kebreab E (eds.) Phosphorus and calcium utilization and requirements in farm animals. 2nd ed. CABI, Wallingford, UK; 2010.

Proszkowiec-Weglarz M, Angel R. Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility. Journal of Applied Poultry Research; 2013;22: 609–627. doi: 10.3382/japr.2012-00743

Gregory NG, Wilkins LJ. Broken bones in domestic fowl: handling and processing damage in end-of-lay battery hens. British Poultry Science; 1989;30: 555–62. doi: 10.1080/00071668908417179

Venäläinen E, Valaja J, Jalava T. Effects of dietary metabolisable energy, calcium and phosphorus on bone mineralisation, leg weakness and performance of broiler chickens. British Poultry Science; 2006; 47: 301–310. doi: 10.1080/00071660600741776

Webster AB. Welfare implications of avian osteoporosis. Poultry Science; 2004;83(2): 184-192. doi: 10.1093/ps/83.2.184

Szmek J, Englmaierová M, Skřivan M,et al. Skeletal disorders in laying hens: a systematic review with a focus on non-cagehousing systems and hemp-based dietary interventions for bone health. British Poultry Science; 2025; 1-3. doi: 10.1080/00071668.2025.2489059

Whitehead CC, Fleming RH. Osteoporosis in cage layers. Poultry Science; 2000;79: 1033–1041. doi: 10.1093/ps/79.7.1033

Sandilands V. The laying hen and bone fractures. Veterinary Record; 2011;169(16): 411–412. doi: 10.1136/vr.d6564

Armstrong EA, Rufener C, Toscano MJ, et al. Keel bone fractures ınduce a depressive-like state in laying hens. Scientific Reports; 2020;10: 3007. doi: 10.1038/s41598-020-59940-1

Cherian G. A guide to the principles of animal nutrition. Oregon State University; 2019.

Mutucumarana RK, Ravindran V, Ravindran G,et al. Influence of dietary calcium concentration on the digestion of nutrients along the ıntestinal tract of broiler chickens. Journal of Poultry Science; 2014;51; 392–401. doi: 10.2141/jpsa.0140022

Anwar M, Ravindran V, Morel P,et al. Effect of calcium source and particle size on the true ileal digestibility and total tract retention of calcium in broiler chickens. Animal Feed Science and Technology; 2017, 224, 39–45. doi: 10.1016/j.anifeedsci.2016.12.002

David LS, Anwar MN, Abdollahi MR, et al. Calcium nutrition of broilers: current perspectives and challenges. Animals; 2023;13; 1590. doi: 10.3390/ani13101590

Anwar MN, Ravindran V, Morel PCH, et al. Apparent ileal digestibility of calcium in limestone for broiler chickens. Animal Feed Science and Technology; 2016;213: 142–147. doi: 10.1016/j.anifeedsci.2016.01.014

Amerah AM, Plumstead PW, Barnard LP, et al. Effect of calcium level and phytase addition on ileal phytate degradation and amino acid digestibility of broilers fed corn-based diets. Poultry Science; 2014; 93(4): 906–915. doi: 10.3382/ps.2013-03465

Majeed S, Qudsieh R, Edens F, et al. Limestone particle size, calcium and phosphorus levels, and phytase effects on live performance and nutrients digestibility of broilers. Poultry Science; 2020; 99(3): 1502–1514. doi: 10.1016/j.psj.2019.11.009

Bradbury EJ, Wilkinson SJ, Cronin GM, et al. Effects of phytase, calcium source, calcium concentration and particle size on broiler performance, nutrient digestibility and skeletal integrity. Animal Production Science; 2018; 58(2): 271–283. doi: 10.1071/AN16175

Kim SW, Li W, Angel R, et al. Effects of limestone particle size and dietary Ca concentration on apparent P and Cadigestibility in the presence or absence of phytase. Poultry Science; 2018; 97(12): 4306–4314. doi: 10.3382/ps/pey304

Moss AM, Chrystal PV, Dersjant-Li Y, et al. Responses in digestibilities of macro-minerals, trace minerals and amino acids generated by exogenous phytase and xylanase in canola meal diets offered to broiler chickens. Animal Feed Science and Technology; 2018; 240: 22–30. doi: 10.1016/j.anifeedsci.2018.03.011

Attar A, Kermanshahi H, Golian, A. Effects of conditioning time and sodium bentonite on pellet quality, growth performance, intestinal morphology and nutrient retention in finisher broilers. British Poultry Science; 2017; 59(2): 190–197. doi: 10.1080/00071668.2017.1409422

Mahmood S, Ali H, Ahmad F, et al. Estimation of tannins in different sorghum varieties and their effects on nutrient digestibility and absorption of some minerals in caged white leghorn layers. International Journal of Agriculture and Biology; 2014; 16: 217–221.

Li W, Angel R, Kim SW, et al. Impacts of age and calcium on phytase efficacy in broiler chickens. Animal Feed Science and Technololgy; 2018; 238: 9–17. doi: 10.1016/j.anifeedsci.2018.01.021

Ingelmann CJ, Witzig M, Möhring J, et al. Phytate degradation and phosphorus digestibility in broilers and turkeys fed different corn sources with or without added phytase. Poultry Science; 2019; 98(2): 912–922. doi: 10.3382/ps/pey438

Rao KS, Roland Sr DA. In vivo limestone solubilisation in commercial leghorns: Role of dietary calcium level, limestone particle size, in vitro limestone solubility rate, and the calcium status of the hen. Poultry Science; 1990; 69(12): 2170–2176. doi: 10.3382/ps.0692170

Anwar M, Ravindran V, Morel P,et al. Measurement of the true ıleal calcium digestibility of some feed ıngredients for broiler chickens. Animal Feed Science and Technology; 2018; 237: 118–128. doi: 10.1016/j.anifeedsci.2018.01.010

Hurwitz S, Bar A. The sites of calcium and phosphate absorption in the chick. Poultry Science; 1970; 49(1): 324-325. doi: 10.3382/ps.0490324.

Li T, Xing G, Shao Y, et al. Dietary calcium or phosphorus deficiency impairs the bone development by regulating related calcium or phosphorus metabolic utilization parameters of broilers. Poultry Science; 2020; 99(6): 3207–3214. doi:10.1016/j.psj.2020.01.028

Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, et al. The parathyroid is a target organ for FGF23 in rats. The Journal of Clinical Investigation; 2007; 117:4003–8. doi: 10.1172/JCI32409

Okuyan R, Filya İ. Hayvan Besleme Biyokimyası. Bursa Uludağ Üniversitesi, Ziraat Fakültesi. Ders Notları: 94. Bursa, Türkiye; 2017.

Selle PH, Cowieson AJ, Ravindran V. Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livestock Science; 2009; 124(1-3): 126–141. doi: 10.1016/j.livsci.2009.01.006

Ceylan, N. Hayvan beslemede mineraller, vitaminler ve stabilite. In: Yavuz HM (ed.) Çiftlik Hayvanlarının Beslenmesinde Temel Prensipler ve Karma Yem Üretiminde Bazı Bilimsel Yaklaşımlar. İstanbul, Türkiye; 2001.

Kimura M. Overview of magnesium nutrition. In: Nishizawa Y, Morii H, Durlach J. (Eds) New perspectives in magnesium research, Springer-Verlag, London; 2007. p. 69-93.

Almquist HJ. Magnesium requirement of the chick. Proceedings of the Society for Experimental Biology and Medicine; 1942; 49: 544-545.

Bird FH. Magnesium deficiency in the chick. 1. Clinical and neuropathological findings. Journal of Nutrition; 1949; 39(1): 12-30. doi: 10.1093/jn/39.1.13

Shastak Y, Rodehutscord M. A review of the role of magnesium in poultry nutrition. World's Poultry Science Journal; 2015; 71: 125-138. doi:10.1017/S0043933915000112

Jeon YS, Kim YB, Lee HG, et al. Effect of dietary organic and ınorganic sulfur on the performance of coccidiosis vaccine challenged broiler chickens. Animals; 2022; 12: 1200. doi: 10.3390/ani12091200

Puls R. Mineral levels in animal health. Diagnostic data. Sherpa International, Clearbrook, British Columbia, Canada; 1990.

Gheisari AA, Rahimi-Fathkoohi A, Toghyani M, et al. Effects of organic chelates of zinc, manganese and copper incomparison to their inorganic sources on performance of broiler chickens. Journal of Animal and Plant Sciences; 2010; 6(2): 630–636.

Sözcü A, Gündüz, M, Avcı Küpeli Z, et al. Dietary zinc, manganese and copper combination in sulphate or amino acid chelate forms impacts laying performance and intestinal morphology in late-phase laying hens. Tropical Animal Health and Production; 2025; 57: 346. doi: 10.1007/s11250-025-04600-7

Zimmermann MB. The influence of iron status on iodine utilization and thyroid function. Annual Review of Nutrition; 2006; 26: 367-389. doi: 10.1146/annurev.nutr.26.061505.111236

Feijo JC, Vieira SL, Horn RM, et al. Iron requirements of broiler chickens as affected by supplemental phytase. Journal of Animal Science; 2023; 102: 1–12. doi: 10.1093/jas/skad265

Rostagno HS, Albino LFT, Hannas MI, et al. Brazilian Tables for Poultry and Swine: Composition of Foods and Nutritional Requirements. 4th ed. UFV, Vi¸Cosa; 2017.

Scott ML, Nesheim MC, Young RJ. Nutrition of the Chicken. In: Scott ML (ed.) Associates, Ithaca. New York; 1982.

Da Cruz Ferreira Júnior H, Da Silva DL, De Carvalho BR, et al. Broiler responses to copper levels and sources: growth, tissue mineral content, antioxidant status and mRNA expression of genes involved in lipid and protein metabolism. BMC Veterinary Research; 2022; 18: 223. doi: 10.1186/s12917-022-03286-5

De Marco M, Zoon MV, Margetyal C, et al. Dietary administration of glycine complexed trace minerals can improve performance and slaughter yield in broilers and reduces mineral excretion. Animal Feed Science and Technoloy; 2017; 232: 182–189. doi: 10.1016/j.anifeedsci.2017.08.016

Grzinic G, Piotrowicz-Cieslak A, Klimkowicz-Pawlas A, et al. Intensive poultry farming: a review of the impact on the environment and human health. Science of Total Environment; 2023; 858: 160014. doi: 10.1016/j.scitotenv.2022.160014

Prabhu K.S, Lei X.G. Selenium. Advances in Nutrition. 2016; 7:415-417

Briens M, Mercier Y, Rouffineau F, et al. Comparative study of a new organicselenium source v. seleno-yeast and mineral selenium sources on muscle selenium enrichment and selenium digestibility in broiler chickens. British Journal of Nutrition; 2013; 110(4): 617–624. doi: 10.1017/S0007114512005545

Abdel-Wareth AAA, Muhammad Mobashar AS, Abu Bakkar S. Jojoba seed oil as feed additive for sustainable broiler meat production under hot climatic condition. Animals; 2022; 12(3): 273. doi: 10.3390/ani12030273

Navidshad B, Mohammadrezaei M. The importance of arsenic, vanadium, cobalt and strontium in poultry, a review. Iranian Journal of Applied Animal Science; 2017;7(3): 365-369.

Miller JK, Swanson EW, Spalding GE, et al. The role of the abomasum in recycling of iodine in the bovine. In: Hoekstra WG, Suttie JW, Ganther HE, Mertz W. (eds) Proceedings of the Second International Symposium on Trace Elements in Man and Animals. University Park Press, Baltimore, Maryland; 1974. p. 638–640.

Wemheuer KW, Paufler S. Wirkung von kraftfuttergaben mit hohem anteil an rapsextrakttionschrot (30%, 00-raps) auf die schilddrusenfunktion und milchjodidgehalt bei kȕken. 13. Arbeitstagung Mengen und Spurenelemente, FriedrichSchiller-Universitat, Jena; 1993. P. 223–230.

NRC (National Research Council); Mineral Tolerances of Animals. Second Edition. National Academies Press: Washington, DC; 2005.

Davies RE, Reid BL, Kurnick AA, et al. The effect of sulfate on molybdenum toxicity in the chick. The Journal of Nutrition; 1960; 70(2): 193–198. doi: 10.1093/jn/70.2.193

Rama Rao SV, Ramasubba Reddy V. Utilisation of different phosphorus sources in relation to their fluorine content for broilers and layers. British Poultry Science; 2001; 42(3): 376-383. doi: 10.1080/00071660120055368

Burton EJ, Scholey DV, Prentice S, et al. The role of bioavailable silica in supporting poultry growthand development. World’s Poultry Science Jounral; 2025; 81(2): 521–534. doi: 10.1080/00439339.2025.2461194

Bressman RB, Miles RD, Comer CW, et al. Effect of dietary supplementation of vanadium in type laying hens. Journal of Applied Poultry Research. 2002;11(1): 46-53. doi: 10.1093/japr/11.1.46

Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry; 2001; 1(6): 529–39. doi: 10.2174/1568026013394831

Mashkoor J, Khan A, Khan MZ, et al. Chromium toxicity and oxidative stress in broiler chicks and its amelioration with vitamin E and bentonite. International Journal of Agriculture and Biology; 2016; 18: 1103–8. doi: 10.17957/IJAB/15.0192

Mateo R, Vallverdú-Coll N, López-Antia A, et al. Reducing Pb poisoning in birds and Pb exposure in game meat consumers: the dual benefit of effective Pb shot regulation. Environment International; 2014; 63: 163–168. doi: 10.1016/j.envint.2013.11.006

Smirnova E, Moniruzzaman M, Chin S, et al. A review of the role of curcumin in metal induced toxicity. Antioxidants; 2023; 12(2): 243. doi: 10.3390/antiox12020243

Martins N, Marques M, Vilela DAR, et al. Lead poisoning mortality in wild passeriformes and its detection in free-range chicken eggs in southern Minas Gerais, Brazil. Brazilian Journal of Poultry Science; 2010; 12(3): 149–52. doi: 10.1590/S1516-635X2010000300002

Munir N, Jahangeer M, Bouyahya A, et al. Heavy metal contamination of natural foods is a serious health issue: a review. Sustainability; 2022; 14: 161. doi: 10.3390/su14010161

Muthumani M, Prabu SM. Silibinin potentially protects arsenic-induced oxidative hepatic dysfunction in rats. Toxicology Mechanisms and Methods; 2012; 22: 277–88. doi: 10.3109/15376516.2011.647113

Ning Z, Lan J, Jiang X, et al. Arsenic trioxide-induced autophagy affected the antioxidant capacity and apoptosis rate of chicken hepatocytes. Chemico-Biological Interactions; 2022; 354; 109821. doi: 10.1016/j.cbi.2022.109821

Suleman S, Qureshi JA, Rasheed M, et al. Poultry feed contamination and its potential hazards on human health. Biomedical Science Letters; 2022; 8; 70–81. doi: 10.37185/266

Awuchi CG, Igwe VS, Amagwula IO. Nutritional diseases and nutrient toxicities: a systematic review of the diets and nutrition for prevention and treatment. International Journal of Advanced Academic Research; 2020; 6; 1–46.

Mehar S, Anam I, Masood Z, et al. Bioaccumulation of heavy metals in the different tissues of mackerel scad, Decapterus macarellus (Cuvier, 1833) collected from Karachi and Gwadar coasts of Pakistan. Saudi Journal of Biological Science; 2023; 30: 103540. doi: 10.1016/j.sjbs.2022.103540

Das A. Nanotheranostics: the toxicological implications. Design and Applications of Theranostic Nanomedicines; 2023; 369. doi: 10.1016/B978-0-323-89953-6.00012-X

Kojima LV, Tuberville TD, Parrott BB. Integrating mercury concentrations in American alligators (Alligator mississippiensis) with hunter consumption surveys to estimate exposure risk. Environmental Toxicology and Chemistry; 2023; 42: 525–534. doi: 10.1002/etc.5524

Aziz S, Abdullah S, Anwar H, et al. Effect of engineered nickel oxide nanoparticles on antioxidant enzymes in freshwater fish, Labeo rohita. Pakistan Veterinary Journal; 2021; 41: 424–8. doi: 10.29261/pakvetj/2021.044

Guzzi G, La Porta CA. Molecular mechanisms triggered by mercury. Toxicology; 2008; 244: 1–12. doi: 10.1016/j.tox.2007.11.002

Gaines LG. Historical and current usage of per-and polyfluoroalkyl substances (PFAS): a literature review. American Journal of Industrial Medicine; 2022; 66: 353–78. doi: 10.1002/ajim.23362

Zakanova A, Yerzhanov N, Litvinov Y. The impact of industrial pollution on the populations of small mammals in northern Kazakhstan. Environmental Science and Pollution Research; 2023; 30: 49980–91. doi: 10.1007/s11356-023-25836-6

Hernández-Cruz EY, Amador-Martínez I, Aranda-Rivera AK, et al. Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chemico-Biological Interactions; 2022; 361: 109961. doi: 10.1016/j. cbi.2022.109961

Bakhshalizadeh S, Mora-Medina R, Fazio F, et al. Determination of the heavy metal bioaccumulation patterns in muscles of two species of mullets from the southern Caspian Sea. Animals; 2022; 12: 2819. doi: 10.3390/ ani12202819

Kosečková P, Zvěřina O, Pěchová M, et al. Mineral profile of cricket powders, some edible insect species and their implication for gastronomy. Journal of Food Composition and Analysis; 2022; 107: 104340. doi: 10.1016/j. jfca.2021.104340

Zhang Q, Shi B, Su G, et al. Application of a hybrid GEM-CMB model for source apportionment of PAHs in soil of complex industrial zone. Journal of Hazardous Materials; 2023; 445: 130565. doi: 10.1016/j.jhazmat.2022.130565

Yayınlanan

7 Ocak 2026

Lisans

Lisans