Fizyoterapi ve Rehabilitasyonda Basınç Sensörlerinin Kullanım Alanları ve Güncel Yaklaşımlar
Özet
Basınç sensörleri, piezorezistif, kapasitif, piezoelektrik ve triboelektrik prensiplere dayanan çeşitleri ile sert ve esnek yapısal özellikleri sayesinde fizyoterapi ve rehabilitasyon alanında geniş bir uygulama alanı bulmaktadır. Ortopedik rehabilitasyonda plantar basınç dağılımının analizi, cerrahi sonrası yüklenme paternlerinin nesnel izlenmesi ve alt ekstremite patolojilerinin değerlendirilmesinde; nörolojik rehabilitasyonda inme, Multipl Skleroz, Parkinson ve nöromusküler hastalıklarda; pediatrik rehabilitasyonda konjenital deformitelerin takibi, oturma postürü ve postüral kontrolün değerlendirilmesi ile oyunlaştırılmış rehabilitasyon yaklaşımlarının geliştirilmesinde; geriatrik rehabilitasyonda bası yaralarının önlenmesi, düşme riskinin öngörülmesi, sarkopeninin erken taranması ve oral-motor fonksiyonların izlenmesinde ve kardiyopulmoner rehabilitasyonda solunum fonksiyonlarının sürekli takibi, egzersiz uyumunun artırılması ve salınımlı pozitif ekspiratuar basınç cihazlarının doğru kullanımının değerlendirilmesinde kullanılmaktadır. Artan sensör doğruluğu, taşınabilirlik, kablosuz iletişim olanakları ve yapay zekâ tabanlı veri analiz yöntemlerinin entegrasyonu, basınç sensörlerini kişiselleştirilmiş, objektif ve teknoloji destekli rehabilitasyon yaklaşımlarının vazgeçilmez bileşenlerinden biri haline getirmektedir.
Referanslar
Tai G, Wei D, Su M, Li P, Xie L, Yang J. Force-Sensitive Interface Engineering in Flexible Pressure Sensors: A Review. Sensors. 2022;22(7):2652.
Luo Y, Abidian MR, Ahn J-H, Akinwande D, Andrews AM, Antonietti M, et al. Technology roadmap for flexible sensors. ACS nano. 2023;17(6):5211-95.
Andersen PD, Jørgensen BH, Lading L, Rasmussen B. Sensor foresight—technology and market. Technovation. 2004;24(4):311-20.
An J, Chen P, Wang Z, Berbille A, Pang H, Jiang Y, et al. Biomimetic hairy whiskers for robotic skin tactility. Advanced Materials. 2021;33(24):2101891.
Zhu P, Du H, Hou X, Lu P, Wang L, Huang J, et al. Skin-electrode iontronic interface for mechanosensing. Nature Communications. 2021;12(1):4731.
Wang X, Yu J, Cui Y, Li W. Research progress of flexible wearable pressure sensors. Sensors and Actuators A: Physical. 2021;330:112838.
Meng K, Xiao X, Wei W, Chen G, Nashalian A, Shen S, et al. Wearable pressure sensors for pulse wave monitoring. Advanced Materials. 2022;34(21):2109357.
Ahmed N, Smith PJ, Morley NA. Inkjet printing magnetostrictive materials for structural health monitoring of carbon fibre-reinforced polymer composite. Sensors. 2024;24(14):4657.
Yu A, Zhu M, Chen C, Li Y, Cui H, Liu S, et al. Implantable flexible sensors for health monitoring. Advanced Healthcare Materials. 2024;13(2):2302460.
Huynh TP, Haick H. Autonomous flexible sensors for health monitoring. Advanced Materials. 2018;30(50):1802337.
Hyun JE, Lim T, Kim SH, Lee JH. Wearable ion gel based pressure sensor with high sensitivity and ultra-wide sensing range for human motion detection. Chemical Engineering Journal. 2024;484:149464.
Zhang P, Wang W, Ma Y, Zhang H, Zhou D, Ji X, et al. MXene-based self-adhesive, ultrasensitive, highly tough flexible hydrogel pressure sensors for motion monitoring and robotic tactile sensing. Chemical Engineering Journal. 2024;499:156173.
Kim K, Jung M, Kim B, Kim J, Shin K, Kwon O-S, et al. Low-voltage, high-sensitivity and high-reliability bimodal sensor array with fully inkjet-printed flexible conducting electrode for low power consumption electronic skin. Nano Energy. 2017;41:301-7.
Tai Y, Yang Z. Toward Flexible Wireless Pressure‐Sensing Device via Ionic Hydrogel Microsphere for Continuously Mapping Human‐Skin Signals. Advanced Materials Interfaces. 2017;4(20):1700496.
Lin Z, Yang J, Li X, Wu Y, Wei W, Liu J, et al. Large‐scale and washable smart textiles based on triboelectric nanogenerator arrays for self‐powered sleeping monitoring. Advanced Functional Materials. 2018;28(1):1704112.
Duan S, Zhang H, Liu L, Lin Y, Zhao F, Chen P, et al. A comprehensive review on triboelectric sensors and AI-integrated systems. Materials Today. 2024;80:450-80.
Zhai L, Gao L, Wang Z, Dai K, Wu S, Mu X. An energy harvester coupled with a triboelectric mechanism and electrostatic mechanism for biomechanical energy harvesting. Nanomaterials. 2022;12(6):933.
Huang Y, Wan L, Jiang J, Li L, Zhai J. Self-powered resistance-switching properties of Pr0. 7Ca0. 3MnO3 film driven by triboelectric nanogenerator. Nanomaterials. 2022;12(13):2199.
Duan Y, He S, Wu J, Su B, Wang Y. Recent progress in flexible pressure sensor arrays. Nanomaterials. 2022;12(14):2495.
Ferguson-Pell M, Wilkie I, Reswick J, Barbenel J. Pressure sore prevention for the wheelchair-bound spinal injury patient. Spinal Cord. 1980;18(1):42-51.
Palmieri VR, Haelen G, Cochran G. A comparison of sitting pressures on wheelchair cushions as measured by air cell transducers and miniature electronic transducers. Bulletin of prosthetics research. 1980;10:5-8.
Ferguson-Pell M, Cardi MD. Prototype development and comparative evaluation of wheelchair pressure mapping system. Assistive Technology. 1993;5(2):78-91.
Price D. Pilot Study on Midfoot Pressure Analysis in Individuals with Flat Feet While Climbing Stairs Using a Pressure Sensing System. 2025.
McPoil TG, Vicenzino B, Cornwall MW, Collins N. Can foot anthropometric measurements predict dynamic plantar surface contact area? J Foot Ankle Res. 2009;2:28.
Chan MS, Sigward SM. Individuals following anterior cruciate ligament reconstruction practice underloading strategies during daily activity. J Orthop Res. 2022;40(3):565-72.
Rodríguez-Sanz D, Becerro-de-Bengoa-Vallejo R, López-López D, Calvo-Lobo C, Martínez-Jiménez EM, Perez-Boal E, et al. Slow velocity of the center of pressure and high heel pressures may increase the risk of Sever's disease: a case-control study. BMC Pediatr. 2018;18(1):357.
Migel KG, Blackburn JT, Gross MT, Pietrosimone B, Thoma LM, Wikstrom EA. Effect of sensor location for modifying center of pressure during gait using haptic feedback in people with chronic ankle instability. Gait Posture. 2024;110:71-6.
Zhang Z, Dai Y, Xu Z, Grimaldi N, Wang J, Zhao M, et al. Insole Systems for Disease Diagnosis and Rehabilitation: A Review. Biosensors. 2023;13(8):833.
Kim H, Kim H, Shin WS. Effects of Vibrotactile Biofeedback Providing Real-Time Pressure Information on Static Balance Ability and Weight Distribution Symmetry Index in Patients with Chronic Stroke. Brain Sci. 2022;12(3).
Jung K, Kim Y, Cha Y, In T-S, Hur Y-G, Chung Y. Effects of gait training with a cane and an augmented pressure sensor for enhancement of weight bearing over the affected lower limb in patients with stroke: a randomized controlled pilot study. Clinical Rehabilitation. 2015;29(2):135-42.
Sungkarat S, Fisher BE, Kovindha A. Efficacy of an insole shoe wedge and augmented pressure sensor for gait training in individuals with stroke: a randomized controlled trial. Clinical Rehabilitation. 2011;25(4):360-9.
Pasin Neto H, Borges RA. Visceral Mobilization and Functional Constipation in Stroke Survivors: A Randomized, Controlled, Double-Blind, Clinical Trial. Cureus. 2020;12(5):e8058.
Błaszczyszyn M, Szczęsna A, Konieczny M, Pakosz P, Balko S, Borysiuk Z. Quantitative Assessment of Upper Limb Movement in Post-Stroke Adults for Identification of Sensitive Measures in Reaching and Lifting Activities. J Clin Med. 2023;12(9).
Viqueira Villarejo M, Maeso García J, García Zapirain B, Méndez Zorrilla A. Technological solution for determining gait parameters using pressure sensors: a case study of multiple sclerosis patients. Bio-medical materials and engineering. 2014;24(6):3511-22.
Martin CL, Phillips BA, Kilpatrick T, Butzkueven H, Tubridy N, McDonald E, et al. Gait and balance impairment in early multiple sclerosis in the absence of clinical disability. Multiple Sclerosis Journal. 2006;12(5):620-8.
Galea MP, Cofré Lizama LE, Butzkueven H, Kilpatrick TJ. Gait and balance deterioration over a 12-month period in multiple sclerosis patients with EDSS scores≤ 3.0. NeuroRehabilitation. 2017;40(2):277-84.
Stinson M, Crawford S, Porter-Armstrong A. Interface pressure measurements: Visual interpretation of pressure maps with MS clients. Disability and Rehabilitation. 2008;30(8):618-24.
Zhao H, Cao J, Xie J, Liao WH, Lei Y, Cao H, et al. Wearable sensors and features for diagnosis of neurodegenerative diseases: A systematic review. Digit Health. 2023;9:20552076231173569.
Arceri A, Mazzotti A, Sgubbi F, Zielli SO, Langone L, Di Paola G, et al. Plantar Pressure Distribution in Charcot-Marie-Tooth Disease: A Systematic Review. Sensors (Basel). 2025;25(14).
Shiroma NM, Ferreira LFA, Pecora JR, Mariani ALC, Tsuzuki MSG. Development of Assistive Technology Using Gametherapy for Congenital Clubfoot Treatment. IFAC-PapersOnLine. 2024;58(24):199-204.
Eek MN, Lindh K, Himmelmann K. Objective measurement of sitting, using pressure mapping. Clinical application in children with cerebral palsy. Gait & Posture. 2020;81:242-3.
Fradet L, Tiernan J, Mcgrath M, Murray E, Braatz F, Wolf SI. The use of pressure mapping for seating posture characterisation in children with cerebral palsy. Disability and Rehabilitation: Assistive Technology. 2011;6(1):47-56.
Vaisbuch N, Meyer S, Weiss PL. Effect of seated posture on interface pressure in children who are able-bodied and who have myelomeningocele. Disability and Rehabilitation. 2000;22(17):749-55.
Karlsson A, Norrlin S, Silander HC, Dahl M, Lanshammar H. Amplitude and frequency analysis of force plate data in sitting children with and without MMC. Clinical Biomechanics. 2000;15(7):541-5.
Olsson K, Blomkvist A, Beckung E. Pressure mapping as a complement in clinical sitting analysis in children during activity. Advances in Physiotherapy. 2008;10(2):76-84.
Lacoste M, Therrien M, Côté JN, Shrier I, Labelle H, Prince F. Assessment of seated postural control in children: comparison of a force platform versus a pressure mapping system. Archives of physical medicine and rehabilitation. 2006;87(12):1623-9.
Gutierrez EM, Alm M, Hultling C, Saraste H. Measuring seating pressure, area, and asymmetry in persons with spinal cord injury. European Spine Journal. 2004;13(4):374-9.
Blomkvist A, Olsson K, Eek MN. The effect of spinal bracing on sitting function in children with neuromuscular scoliosis. Prosthetics and orthotics international. 2018;42(6):592-8.
Martel M, Parent A, Fortin C, Ballaz L. Impact of foot orthosis design on gait in children with Charcot-Marie-Tooth. Gait & Posture. 2023;106:S18.
Hamanaka-Kondoh S, Kondoh J, Tamine K-i, Hori K, Fujiwara S, Maeda Y, et al. Tongue pressure during swallowing is decreased in patients with Duchenne muscular dystrophy. Neuromuscular Disorders. 2014;24(6):474-81.
Winkler A, Pallauf M, Krutter S, Kutschar P, Osterbrink J, Nestler N. Sensor-based prevention of falls and pressure ulcers: A scoping review. International Journal of Medical Informatics. 2025;199:105878.
Lee K, Ha S, Lee K, Hong S, Shin H, Lee G. Development of a sit-to-stand assistive device with pressure sensor for elderly and disabled: a feasibility test. Phys Eng Sci Med. 2021;44(3):677-82.
Anderson W, Choffin Z, Jeong N, Callihan M, Jeong S, Sazonov E. Empirical study on human movement classification using insole footwear sensor system and machine learning. Sensors. 2022;22(7):2743.
Di Rosa M, Hausdorff JM, Stara V, Rossi L, Glynn L, Casey M, et al. Concurrent validation of an index to estimate fall risk in community dwelling seniors through a wireless sensor insole system: A pilot study. Gait & posture. 2017;55:6-11.
Yu X, Cai Y, Yang R, Ma F, Kim W. Revisiting sensor-based intelligent fall risk assessment for older people: A systematic review. Engineering Applications of Artificial Intelligence. 2025;144:110176.
Han S, Xiao Q, Liang Y, Chen Y, Yan F, Chen H, et al. Using flexible-printed piezoelectric sensor arrays to measure plantar pressure during walking for sarcopenia screening. Sensors. 2024;24(16):5189.
Kim H, Nam HK, Jing T, Yang D, Lee Y, Chae YK, et al. Fast and precise tongue pressure measurement by intraoral laser-induced graphene pressure sensor for elderly healthcare. Virtual and Physical Prototyping. 2025;20(1):e2499445.
Sobrinho ASF, Scalassara PR, Dajer ME. Low-Cost Joystick for Pediatric Respiratory Exercises. J Med Syst. 2020;44(10):186.
O'Sullivan KJ, Collins L, McGrath D, Linnane B, O'Sullivan L, Dunne CP. Oscillating Positive Expiratory Pressure Therapy May Be Performed Poorly by Children With Cystic Fibrosis. Respir Care. 2019;64(4):398-405.
Guo S, Zhao X, Matsuo K, Liu J, Mukai T. Unconstrained detection of the respiratory motions of chest and abdomen in different lying positions using a flexible tactile sensor array. IEEE Sensors Journal. 2019;19(21):10067-76.
Karpiel I, Mysiński M, Olesz K, Czerw M. Overview of respiratory sensor solutions to Support patient diagnosis and monitoring. Sensors (Basel, Switzerland). 2025;25(4):1078.
Jia Z, Huth H, Teoh WQ, Xu S, Wood B, Tse ZTH. State of the Art Review of Wearable Devices for Respiratory Monitoring. IEEE Access. 2025.
Gyi DE, Porter JM, Robertson NK. Seat pressure measurement technologies: considerations for their evaluation. Applied Ergonomics. 1998;29(2):85-91.
Jarumethitanont W, Manupibul U, Tanthuwapathom R, Prasertsukdee S, Limroongreungrat W, Charoensuk W. Development of low-cost pressure mapping device to evaluate force distribution for seat cushion modification. Scientific Reports. 2024;14(1):21804.
Kuru Çolak T, Özen T, Günay Yazıcı C, Sarı DM, Karabacak N, Sarı Z, et al. A new device for assessment and training the human balance and coordination: Marmara Balance and Education System (MarBES). Ir J Med Sci. 2023;192(5):2409-16.
Hu H, Shi X, Song W, Yang Y, Zhang J. Research Progress of Intelligent Sitting Posture Monitoring Systems: A Survey. IEEE Transactions on Instrumentation and Measurement. 2025;74:1-23.
Park G, Woo Y. Comparison between a center of mass and a foot pressure sensor system for measuring gait parameters in healthy adults. J Phys Ther Sci. 2015;27(10):3199-202.