Pediatrik Rehabilitasyonda Motor İmgeleme
Özet
Motor imgeleme (Mİ), bireyin belirli bir motor eylemi zihinsel olarak canlandırdığı, bilişsel açıdan karmaşık bir süreç olarak tanımlanmaktadır. Mİ’nin, motor performans sırasında etkinleşen beyin ağlarıyla kısmen örtüşen sinir ağlarını aktive ettiği gösterilmiştir. Özellikle Mİ sırasında nöral yolların tekrarlayıcı biçimde etkinleştirilmesi, motor öğrenmeyi destekleyen nöroplastisite mekanizmalarını harekete geçirerek Mİ’nin nörorehabilitasyon alanında kullanılmasına bilimsel bir temel oluşturmaktadır. Yaşam boyu beyinde önemli yapısal ve işlevsel değişiklikler görülmekle birlikte, en belirgin nörogelişimsel dönüşümlerin çocukluk döneminde ortaya çıktığı bilinmektedir. Gelişim süreci boyunca nöral ağların giderek daha fazla farklılaşması, daha karmaşık ve uzmanlaşmış algısal-motor davranışların desteklenmesini mümkün kılar. Çocukların Mİ görevlerini yerine getirme kapasitesine yönelik bulguların ve erken yaşlarda çeşitli hasta gruplarında Mİ eğitiminin etkilerini inceleyen çalışmaların sayısı giderek artmaktadır. Mİ, gelişimsel destek ihtiyacının belirgin olduğu çocukluk döneminde, bütüncül ve yenilikçi müdahaleleri tamamlayıcı niteliği sayesinde pediatrik rehabilitasyonda öne çıkan umut verici bir uygulama alanı sunmaktadır. Bu bölümde, motor imgeleme kavramı, motor imgelemenin nöral bağlantıları, değerlendirilmesi, çocuklardaki gelişimi ve pediatrik rehabilitasyon alanındaki kullanımı incelenmektedir.
Referanslar
LeBoutillier N, Marks DF. Mental imagery and creativity: A meta‐analytic review study. British Journal of Psychology. 2003;94(1):29-44.
Lotze M, Cohen LG. Volition and imagery in neurorehabilitation. Cognitive and behavioral neurology. 2006;19(3):135-40.
Grezes J, Decety J. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta‐analysis. Human brain mapping. 2001;12(1):1-19.
Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage. 2001;14(1):S103-S9.
Munzert J, Lorey B, Zentgraf K. Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain research reviews. 2009;60(2):306-26.
Jeannerod M. Motor representations and reality. Behavioral and Brain sciences. 1994;17(2):229-45.
Kilteni K, Andersson BJ, Houborg C, et al. Motor imagery involves predicting the sensory consequences of the imagined movement. Nature communications. 2018;9(1):1617.
Pfurtscheller G, Neuper C. Future prospects of ERD/ERS in the context of brain–computer interface (BCI) developments. Progress in brain research. 2006;159:433-7.
Owen AM, Coleman MR, Boly M, et al. Detecting awareness in the vegetative state. science. 2006;313(5792):1402-.
Jackson PL, Lafleur MF, Malouin F, et al. Potential role of mental practice using motor imagery in neurologic rehabilitation. Archives of physical medicine and rehabilitation. 2001;82(8):1133-41.
Smith D, Wright C, Allsopp A, et al. It's all in the mind: PETTLEP-based imagery and sports performance. Journal of applied sport psychology. 2007;19(1):80-92.
Fansler CL, Poff CL, Shepard KF. Effects of mental practice on balance in elderly women. Physical Therapy. 1985;65(9):1332-8.
Warner L, McNeill ME. Mental imagery and its potential for physical therapy. Physical therapy. 1988;68(4):516-21.
Decety J, Ingvar DH. Brain structures participating in mental simulation of motor behavior: A neuropsychological interpretation. Acta psychologica. 1990;73(1):13-34.
Guillot A, Debarnot U, Louis M, et al. 215Motor imagery and motor performance: Evidence from the sport science literature. In: Guillot A, Collet C, editors. The neurophysiological foundations of mental and motor imagery: Oxford University Press; 2010. p. 0.
Jeannerod M. The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain sciences. 1994;17(2):187-202.
Braun SM, Beurskens AJ, et al. The effects of mental practice in stroke rehabilitation: a systematic review. Archives of physical medicine and rehabilitation. 2006;87(6):842-52.
Stevens JA. Interference effects demonstrate distinct roles for visual and motor imagery during the mental representation of human action. Cognition. 2005;95(3):329-50.
Olsson CJ, Nyberg L. Motor imagery: if you can't do it, you won't think it. Scandinavian journal of medicine & science in sports. 2010;20(5):711-5.
Anquetil T, Jeannerod M. Simulated actions in the first and in the third person perspectives share common representations. Brain research. 2007;1130:125-9.
Farrer C, Frith CD. Experiencing oneself vs another person as being the cause of an action: the neural correlates of the experience of agency. Neuroimage. 2002;15(3):596-603.
Moran A. In the mind’s eye. The Psychologist. 2002;15(8):414-5.
Jeannerod M, Decety J. Mental motor imagery: a window into the representational stages of action. Current opinion in neurobiology. 1995;5(6):727-32.
Jeannerod M. Motor cognition: What actions tell the self: OuP Oxford; 2006.
O’Shea H, Moran A. Does motor simulation theory explain the cognitive mechanisms underlying motor imagery? A critical review. Frontiers in Human Neuroscience. 2017;11:72.
Guillot A, Collet C. Duration of mentally simulated movement: a review. Journal of motor behavior. 2005;37(1):10-20.
Hardwick RM, Caspers S, Eickhoff SB, et al. Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution. Neuroscience & Biobehavioral Reviews. 2018;94:31-44.
Debarnot U, Sperduti M, Di Rienzo F, et al. Experts bodies, experts minds: how physical and mental training shape the brain. Frontiers in human neuroscience. 2014;8:280.
Grosprêtre S, Lebon F, Papaxanthis et al. Spinal plasticity with motor imagery practice. The Journal of physiology. 2019;597(3):921-34.
Chatrian GE, Petersen MC, Lazarte JA. The blocking of the rolandic wicket rhythm and some central changes related to movement. Electroencephalography and clinical neurophysiology. 1959;11(3):497-510.
Gastaut H, Naquet R, Gastaut Y, et al. A study of mu rhythm in subjects lacking one or more limbs. Electroencephalography and Clinical Neurophysiology; 1965.
Davidson RJ, Schwartz GE. Brain mechanisms subserving self‐generated imagery: Electrophysiological specificity and patterning. Psychophysiology. 1977;14(6):598-602.
Hanakawa T, Immisch I, Toma K, et al. Functional properties of brain areas associated with motor execution and imagery. Journal of neurophysiology. 2003;89(2):989-1002.
Dechent P, Merboldt K-D, Frahm J. Is the human primary motor cortex involved in motor imagery? Cognitive Brain Research. 2004;19(2):138-44.
Lotze M, Montoya P, Erb M, et al. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. Journal of cognitive neuroscience. 1999;11(5):491-501.
DeCharms RC, Christoff K, Glover GH, et al. Learned regulation of spatially localized brain activation using real-time fMRI. Neuroimage. 2004;21(1):436-43.
Solodkin A, Hlustik P, Chen EE, et al. Fine modulation in network activation during motor execution and motor imagery. Cerebral cortex. 2004;14(11):1246-55.
Guillot A, Collet C, Nguyen VA, et al. Brain activity during visual versus kinesthetic imagery: an fMRI study. Human brain mapping. 2009;30(7):2157-72.
Neuper C, Scherer R, Reiner M, et al. Imagery of motor actions: Differential effects of kinesthetic and visual–motor mode of imagery in single-trial EEG. Cognitive brain research. 2005;25(3):668-77.
Stecklow MV, Infantosi AFC, Cagy M. EEG changes during sequences of visual and kinesthetic motor imagery. Arquivos de neuro-psiquiatria. 2010;68:556-61.
Guillot A, Collet C, Nguyen VA, et al. Functional neuroanatomical networks associated with expertise in motor imagery. Neuroimage. 2008;41(4):1471-83.
Yi W, Qiu S, Wang K, et al. Evaluation of EEG oscillatory patterns and cognitive process during simple and compound limb motor imagery. PloS one. 2014;9(12):e114853.
Ramos-Murguialday A, Birbaumer N. Brain oscillatory signatures of motor tasks. Journal of neurophysiology. 2015;113(10):3663-82.
Malouin F, Richards CL, Jackson PL, et al. The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: a reliability and construct validity study. J Neurol Phys Ther. 2007;31(1):20-9.
Martin KA, Moritz SE, Hall CR. Imagery use in sport: A literature review and applied model. The sport psychologist. 1999;13(3):245-68.
Collet C, Guillot A, Lebon F, et al. Measuring motor imagery using psychometric, behavioral, and psychophysiological tools. Exercise and sport sciences reviews. 2011;39(2):85-92.
Cumming J, Eaves DL. The nature, measurement, and development of imagery ability. Imagination, Cognition and Personality. 2018;37(4):375-93.
Hall C, Pongrac J, Buckholz E. The measurement of imagery ability. Human movement science. 1985;4(2):107-18.
Hall CR, Martin KA. Measuring movement imagery abilities: a revision of the movement imagery questionnaire. Journal of mental imagery. 1997.
Williams SE, Cumming J, Ntoumanis et al. Further validation and development of the movement imagery questionnaire. Journal of sport and exercise psychology. 2012;34(5):621-46.
Saleem GT. Defining and measuring motor imagery in children: mini review. Frontiers in Psychology. 2023;Volume 14 - 2023.
Isaac A, Marks DF, Russell DG. An instrument for assessing imagery of movement: The Vividness of Movement Imagery Questionnaire (VMIQ). Journal of mental Imagery. 1986.
Hall CR, Mack DE, Paivio A, et al. Sport imagery questionnaire. International Journal of Sport Psychology. 2005.
Malouin F, Richards CL. Mental practice for relearning locomotor skills. Physical therapy. 2010;90(2):240-51.
Williams S, Guillot A, Di Rienzo F, et al. Comparing self-report and mental chronometry measures of motor imagery ability. European journal of sport science. 2015;15:1-9.
Hegarty M. Ability and sex differences in spatial thinking: What does the mental rotation test really measure? Psychonomic bulletin & review. 2018;25(3):1212-9.
Parsons LM. Imagined spatial transformations of one's hands and feet. Cognitive psychology. 1987;19(2):178-241.
Spruijt S, van der Kamp J, Steenbergen B. Current insights in the development of children's motor imagery ability. Front Psychol. 2015;6:787.
Hamada H, Matsuzawa D, Sutoh C, et al. Comparison of brain activity between motor imagery and mental rotation of the hand tasks: a functional magnetic resonance imaging study. Brain Imaging Behav. 2018;12(6):1596-606.
Mast FW, Gurtner LM. Mental Rotation and Visual Imagery. Oxford University Press; 2023.
Zhao B, Della Sala S, et al. The time course of planar and non-planar rotations in a letter rotation task. Biol Psychol. 2023;182:108650.
Malouin F, Richards CL, Durand A, et al. Clinical assessment of motor imagery after stroke. Neurorehabilitation and neural repair. 2008;22(4):330-40.
Chepurova A, Hramov A, Kurkin S. Motor imagery: how to assess, improve its performance, and apply it for psychosis diagnostics. Diagnostics. 2022;12(4):949.
Rossini PM, Dal Forno G. Integrated technology for evaluation of brain function and neural plasticity. Phys Med Rehabil Clin N Am. 2004;15(1):263-306.
Sun L, Yin D, Zhu Y, et al. Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: a longitudinal fMRI study. Neuroradiology. 2013;55(7):913-25.
Llanos C, Rodriguez M, Rodriguez-Sabate C, et al. Mu-rhythm changes during the planning of motor and motor imagery actions. Neuropsychologia. 2013;51(6):1019-26.
Dai Y, Huang F, Zhu Y. Clinical efficacy of motor imagery therapy based on fNIRs technology in rehabilitation of upper limb function after acute cerebral infarction. Pak J Med Sci. 2022;38(7):1980-5.
Yip DW, Awosika AO, Lui F. Physiology, motor cortical. Available from: https://www.ncbi.nlm.nih.gov/books/NBK542188/ (Accessed 15th
August 2025).
Simonsmeier BA, Andronie M, Buecker S, et al. The effects of imagery interventions in sports: A meta-analysis. International Review of Sport and Exercise Psychology. 2021;14(1):186-207.
MacIntyre TE, Madan CR, Moran AP, et al. Motor imagery, performance and motor rehabilitation. Progress in brain research. 2018;240:141-59.
Ter Horst AC, Van Lier R, Steenbergen B. Mental rotation task of hands: differential influence number of rotational axes. Experimental Brain Research. 2010;203(2):347-54.
Iachini T, Ruggiero G, Bartolo A, et al. The effect of body-related stimuli on mental rotation in children, young and elderly adults. Scientific reports. 2019;9(1):1169.
Spruijt S, van der Kamp J, Steenbergen B. Current insights in the development of children’s motor imagery ability. Frontiers in psychology. 2015;6:787.
Caeyenberghs K, Tsoupas J, Wilson PH, et al. Motor imagery development in primary school children. Developmental neuropsychology. 2009;34(1):103-21.
Spruijt S, van der Kamp J, Steenbergen B. The ability of 6-to 8-year-old children to use motor imagery in a goal-directed pointing task. Journal of Experimental Child Psychology. 2015;139:221-33.
Casey BJ, Tottenham N, Liston C, et al. Imaging the developing brain: what have we learned about cognitive development? Trends in cognitive sciences. 2005;9(3):104-10.
Coleman JC. The nature of adolescence: Routledge; 2011.
Katschmarsky S, Cairney S, Maruff P, et al. The ability to execute saccades on the basis of efference copy: impairments in double-step saccade performance in children with developmental co-ordination disorder. Experimental Brain Research. 2001;136(1):73-8.
Wilson PH, Maruff P, Ives S, et al. Abnormalities of motor and praxis imagery in children with DCD. Human movement science. 2001;20(1-2):135-59.
Caeyenberghs K, Wilson PH, Van Roon D, et al. Increasing convergence between imagined and executed movement across development: evidence for the emergence of movement representations. Developmental science. 2009;12(3):474-83.
Choudhury S, Charman T, Bird V, et al. Adolescent development of motor imagery in a visually guided pointing task. Consciousness and cognition. 2007;16(4):886-96.
Choudhury S, Charman T, Bird V, et al. Development of action representation during adolescence. Neuropsychologia. 2007;45(2):255-62.
Souto DO, Cruz TKF, Fontes PLB, et al. Motor imagery development in children: changes in speed and accuracy with increasing age. Frontiers in pediatrics. 2020;8:100.
Saleem GT. Defining and measuring motor imagery in children: mini review. Frontiers in Psychology. 2023;14:1227215.
Quaiser-Pohl C, Neuburger S, Heil M,. Is the male advantage in mental-rotation performance task independent? On the usability of chronometric tests and paper-and-pencil tests in children. International Journal of Testing. 2014;14(2):122-42.
Funk M, Brugger P, Wilkening F. Motor processes in children's imagery: The case of mental rotation of hands. Developmental science. 2005;8(5):402-8.
Fuelscher I, Williams J, Wilmut K, et al. Modeling the maturation of grip selection planning and action representation: Insights from typical and atypical motor development. Frontiers in Psychology. 2016;7:108.
Butson ML, Hyde C, Steenbergen B, et al. Assessing motor imagery using the hand rotation task: does performance change across childhood? Human movement science. 2014;35:50-65.
Toussaint L, Tahej P-K, Thibaut J-P, et al. On the link between action planning and motor imagery: A developmental study. Experimental Brain Research. 2013;231(3):331-9.
Souto DO, Cruz TKF, Coutinho K, et al. Effect of motor imagery combined with physical practice on upper limb rehabilitation in children with hemiplegic cerebral palsy. NeuroRehabilitation. 2020;46(1):53-63.
Doussoulin A, Rehbein L. Motor imagery as a tool for motor skill training in children. Motricidade. 2011;7(3):37-43.
Haire CM, Tremblay L, Vuong V, et al. Therapeutic instrumental music training and motor imagery in post-stroke upper-extremity rehabilitation: a randomized-controlled pilot study. Archives of rehabilitation research and clinical translation. 2021;3(4):100162.
Kashif M, Ahmad A, Bashir K, et al. Motor imagery promising technique for Rehabilitation of Patients with Parkinson's disease: A Systematic Review. Journal of Liaquat University of Medical & Health Sciences. 2023;22(04):223-30.
Opsommer E, Chevalley O, Korogod N. Motor imagery for pain and motor function after spinal cord injury: a systematic review. Spinal Cord. 2020;58(3):262-74.
Gil-Bermejo-Bernardez-Zerpa A, Moral-Munoz JA, Lucena-Anton D, et al. Effectiveness of motor imagery on motor recovery in patients with multiple sclerosis: systematic review. International Journal of Environmental Research and Public Health. 2021;18(2):498.
Gentile AE, Rinella S, Desogus E, et al. Motor imagery for paediatric neurorehabilitation: how much do we know? Perspectives from a systematic review. Frontiers in Human Neuroscience. 2024;18:1245707.
Bora-Zereyak M, Bulut N, Yılmaz Ö, et al. Motor imagery ability of children with duchenne muscular dystrophy: Reliability and validity of kinesthetic and Visual Imagery Questionnaire-10, and its association with cognitive status. European Journal of Paediatric Neurology. 2024;51:118-24.
Bora-Zereyak M, Bulut N, Yılmaz Ö, et al. The effects of telerehabilitation-based motor imagery training on motor imagery ability, motor function and physical performance in Duchenne muscular dystrophy. Disability and Rehabilitation. 2025;47(15):3866-75.
Umut GU, Özdi̇nçler AR, Uluğ F, et al. Effects of motor imagery adding to physiotherapy and rehabilitation program in children with Duchenne Muscular Dystrophy: does it make a difference? European Journal of Paediatric Neurology. 2025;57:64-71.
Association AP. Diagnostic and statistical manual of mental disorders: American psychiatric association; 2013.
Scott MW, Wood G, Holmes PS, et al. Combined action observation and motor imagery: An intervention to combat the neural and behavioural deficits associated with developmental coordination disorder. Neuroscience & Biobehavioral Reviews. 2021;127:638-46.
Reynolds JE, Licari MK, Reid SL, et al. Reduced relative volume in motor and attention regions in developmental coordination disorder: a voxel-based morphometry study. International Journal of Developmental Neuroscience. 2017;58:59-64.
Williams J, Kashuk SR, Wilson PH, et al. White matter alterations in adults with probable developmental coordination disorder: an MRI diffusion tensor imaging study. Neuroreport. 2017;28(2):87-92.
Zwicker JG, Missiuna C, Harris SR, et al. Developmental coordination disorder: a pilot diffusion tensor imaging study. Pediatric neurology. 2012;46(3):162-7.
Gordon AM. Impaired Voluntary Movement Control and Its Rehabilitation in Cerebral Palsy. Adv Exp Med Biol. 2016;957:291-311. doi: 10.1007/978-3-319-47313-0_16.
Zwicker JG, Missiuna C, Harris SR, et al. Brain activation associated with motor skill practice in children with developmental coordination disorder: an fMRI study. International Journal of Developmental Neuroscience. 2011;29(2):145-52.
de Xivry J-JO, Ethier V. Neural correlates of internal models. Journal of Neuroscience. 2008;28(32):7931-2.
Adams IL, Lust JM, Wilson PH, et al. Compromised motor control in children with DCD: A deficit in the internal model?—A systematic review. Neuroscience & Biobehavioral Reviews. 2014;47:225-44.
Smits-Engelsman B, Vincon S, Blank R, et al. Evaluating the evidence for motor-based interventions in developmental coordination disorder: A systematic review and meta-analysis. Research in developmental disabilities. 2018;74:72-102.
Brown-Lum M, Zwicker JG. Neuroimaging and occupational therapy: Bridging the gap to advance rehabilitation in developmental coordination disorder. Journal of Motor Behavior. 2017;49(1):98-110.
Blank R, Barnett AL, Cairney J, et al. International clinical practice recommendations on the definition, diagnosis, assessment, intervention, and psychosocial aspects of developmental coordination disorder. Developmental Medicine & Child Neurology. 2019;61(3):242-85.
Marshall B, Wright D, Holmes P, et al. Combined action observation and motor imagery facilitates visuomotor adaptation in children with developmental coordination disorder. Research in Developmental Disabilities. 2020;98:103570.
Scott MW, Emerson JR, Dixon J, et al. Motor imagery during action observation enhances automatic imitation in children with and without developmental coordination disorder. Journal of Experimental Child Psychology. 2019;183:242-60.
Scott MW, Emerson JR, Dixon J, et al. Motor imagery during action observation enhances imitation of everyday rhythmical actions in children with and without developmental coordination disorder. Human movement science. 2020;71:102620.
EbrahimiSani S, Sohrabi M, Taheri H, et al. Effects of virtual reality training intervention on predictive motor control of children with DCD–A randomized controlled trial. Research in developmental disabilities. 2020;107:103768.
Morris C. Definition and classification of cerebral palsy: a historical perspective. Developmental Medicine & Child Neurology. 2007;49:3-7.
Gordon AM, Charles J, Steenbergen B. Fingertip force planning during grasp is disrupted by impaired sensorimotor integration in children with hemiplegic cerebral palsy. Pediatric Research. 2006;60(5):587-91.
Steenbergen B, Gordon AM. Activity limitation in hemiplegic cerebral palsy: evidence for disorders in motor planning. Developmental medicine and child neurology. 2006;48(9):780-3.
Steenbergen B, Verrel J, Gordon AM. Motor planning in congenital hemiplegia. Disability and rehabilitation. 2007;29(1):13-23.
Mutsaarts M, Steenbergen B, Meulenbroek R. A detailed analysis of the planning and execution of prehension movements by three adolescents with spastic hemiparesis due to cerebral palsy. Experimental Brain Research. 2004;156(3):293-304.
Crajé C, van Elk M, Beeren M, et al. Compromised motor planning and motor imagery in right hemiparetic cerebral palsy. Research in Developmental Disabilities. 2010;31(6):1313-22.
Mutsaarts M, Steenbergen B, Bekkering H. Anticipatory planning deficits and task context effects in hemiparetic cerebral palsy. Experimental Brain Research. 2006;172(2):151-62.
Steenbergen B, Jongbloed‐Pereboom M, Spruijt S, et al. Impaired motor planning and motor imagery in children with unilateral spastic cerebral palsy: challenges for the future of pediatric rehabilitation. Developmental Medicine & Child Neurology. 2013;55:43-6.
Steenbergen B, Craje C, Nilsen DM, et al. Motor imagery training in hemiplegic cerebral palsy: a potentially useful therapeutic tool for rehabilitation. Developmental Medicine & Child Neurology. 2009;51(9):690-6.
Williams J, Reid SM, Reddihough DS, et al. Motor imagery ability in children with congenital hemiplegia: effect of lesion side and functional level. Research in developmental disabilities. 2011;32(2):740-8.
Molina M, Kudlinski C, Guilbert J, et al. Motor imagery for walking: a comparison between cerebral palsy adolescents with hemiplegia and diplegia. Research in Developmental Disabilities. 2015;37:95-101.
Jongsma ML, Baas CM, Sangen AF, et al. Children with unilateral cerebral palsy show diminished implicit motor imagery with the affected hand. Developmental Medicine & Child Neurology. 2016;58(3):277-84.
Sharif MR, Hemayattalab R, Sayyah M, et al. Effects of physical and mental practice on motor learning in individuals with cerebral palsy. Journal of Developmental and Physical Disabilities. 2015;27(4):479-87.
Cabral-Sequeira AS, Coelho DB, Teixeira LA. Motor imagery training promotes motor learning in adolescents with cerebral palsy: comparison between left and right hemiparesis. Experimental Brain Research. 2016;234(6):1515-24.