İç Mekan Süs Bitkilerinin Genel İstekleri

Özet

Referanslar

Abdul-Kadhm, N. S. A., & Hussein, F. A. (2022). Effect of organic fertilizers on the growth of ornamental plants. Plant Archives, 13(1), 43–47.

Alp, H. A. (2022). İç Mekân Süs Bitkileri. Tarım ve Orman Bakanlığı Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü Alata Bahçe Kültürleri Araştırma Enstitüsü broşürü.

Bantis, F., Ouzounis, T., & Radoglou, K. (2016). Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Scientia Horticulturae, 198, 277–283.

Battistelli, A. (2013). Maximizing efficiency in closed ecosystems. Res Mag, 20, 7.

Bhadra, S., & Roy, A. (2021). Optimization of light and temperature for photosynthesis and growth in Oryza sativa L. for sustainable agriculture. Journal of Plant Nutrition, 44, 1158–1168.

Bharti Gautam, R., Dubey, K., Kaur, N., & Choudhary, O. P. (2021). Growth response of indoor ornamental plant species to various artificial light intensities (LED) in an indoor vertical garden. Plant Archives, 21(1), 695–700.

Burnett, S. E., Mattson, N. S., & Williams, K. A. (2016). Substrates and fertilizers for organic container production of herbs, vegetables, and herbaceous ornamental plants grown in greenhouses in the United States. Scientia Horticulturae, 208, 111–119.

Cary, A. M. (2022). History of controlled environment horticulture: Indoor farming and its key technologies. HortScience, 57(2), 247–256.

Cho, L. H., Yoon, J., & An, G. (2017). The control of flowering time by environmental factors. Plant Journal, 90, 708–719.

D’Amato, A. W., Bradford, J. B., Fraver, S., & Palik, B. J. (2011). Forest management for mitigation and adaptation to climate change: Insights from long-term silviculture experiments. Forest Ecology and Management, 262(5), 803–816.

Darko, E., Heydarizadeh, P., Schoefs, B., & Sabzalian, M. R. (2014). Photosynthesis under artificial light: The shift in primary and secondary metabolism. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130243.

Demir, K., ve ark. (2004). The effect of different LED light on the germination and growth of petunia (Petunia hybrida). Asian Journal of Plant Sciences, 3(5), 564–567.

Ding, J., et al. (2020). Low red:far-red light ratio promotes lateral root development by modulating the auxin pathway in maize seedlings. Journal of Experimental Botany, 71(19), 5891–5903.

Dou, H., & Niu, G. (2020). Plant responses to light. In Plant Factory Basics, Applications and Advances (2nd ed.). Elsevier.

Dou, H., Niu, G., & Gu, M. (2019). Photosynthetic and morphological responses of three ornamental plant species to different light quality treatments. HortScience, 54(10), 1664–1672.

Folta, K. M., & Childers, K. S. (2008). Light as a growth regulator: Controlling plant biology with narrow-bandwidth solid-state lighting systems. HortScience, 43, 1957–1964.

Genc, H. (2015). Mudanya sahillerinde bir antik liman kenti: Kapanca. Yeşil Bursa Dergisi. http://www.yesilbursadergisi.com/mobil/haber.php?id=208 (Erişim Tarihi: 20.03.2019).

Gerovac, J. R., Craver, J. K., Boldt, J. K., & Lopez, R. G. (2016). Light intensity and daily light integral influence morphology and time to flower of annual bedding plants. HortScience, 51(5), 496–503.

Goins, G. D., Yorio, N. C., Sanwo, M. M., & Brown, C. S. (1997). Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. Journal of Experimental Botany, 48(7), 1407–1413.

Gür, M. (1992). Ülkemiz turizminin çeşitlendirilmesi ve Karadeniz Ekonomik İşbirliği. Doğu Karadeniz Turizmi Konferans-Workshop, Haziran, Trabzon, Bildiriler Kitabı: 177–184.

Hassanpour, B., & Ramezanian, A. (2020). Effect of artificial lighting on photosynthesis, growth and essential oil yield in peppermint (Mentha piperita L.) grown in controlled environments. Industrial Crops and Products, 150, 112408.

He, D., Zhang, H., & Yang, P. (2019). The role of phospholipase Dα1 in Arabidopsis seed germination and seedling growth under salt and osmotic stress. Frontiers in Plant Science, 10, 1234.

Hogewoning, S. W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W., & Harbinson, J. (2010). Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 61(11), 3107–3117.

Hovi, T., Niskanen, O., & Tahvonen, R. (2004). Growth and development of poinsettia at different daily light integrals. Scientia Horticulturae, 102(2), 265–277.

Islam, M. A., Berkelmann, D., Siebrecht, S., Viehöver, P., Mohr, C., Reichenauer, T. G., & Soja, G. (2018). Response of plant physiology to biochar and organic fertilizer in greenhouse-grown tomato. Agronomy, 8(9), 158.

Islam, M. A., Kuwar, G., Clarke, J. L., Blystad, D. R., Gislerød, H. R., Olsen, J. E., & Torre, S. (2012). Artificial light from light emitting diodes (LEDs) with a high proportion of blue light results in shorter poinsettias compared to high pressure sodium (HPS) lamps. Scientia Horticulturae, 147, 136–143.

Jeong, S. W., Park, S., Jin, J. Y., Seo, O. N., Kim, G. S., Kim, Y. H., Bae, H., Lee, G., Shin, S. C., Cho, Y. H., & Shin, H. J. (2012). Influence of four different light-emitting diode lights on flowering and polyphenol variations in the leaves of Chrysanthemum (Chrysanthemum morifolium). Journal of Agricultural and Food Chemistry, 60(38), 9793–9800.

Johkan, M., Shoji, K., Goto, F., Hashida, S. N., & Yoshihara, T. (2012). Blue light-emitting diode light induces abiotic stress tolerance in Lactuca sativa L. Environmental and Experimental Botany, 75, 128–133.

Kaiser, E., Weerheim, K., Schapendonk, A. H., Pierik, R., & Meinen, E. (2019). High blue light dose promotes growth in lettuce by enhancing photosynthetic light use efficiency. Frontiers in Plant Science, 10, 219.

Kang, W. H., Park, J. S., Bae, G. S., Lee, H. J., Back, K., & Kim, S. H. (2021). Exogenous application of melatonin improves plant growth and fruit quality of tomato under high temperature stress. Horticulturae, 7(5), 98.

Kato, M., & Shimizu, S. (1987). Chlorophyll metabolism in higher plants VII: Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Canadian Journal of Botany, 65(4), 729–735.

Kong, Y., Li, C., Tang, J., Liu, Y., Sun, M., & Wang, X. (2019). The blue light receptor CRY1 interacts with BZR1 and BIN2 to regulate brassinosteroid signaling and photomorphogenesis. Molecular Plant, 12(4), 566–580.

Kusuma, P., & Bugbee, B. (2021). Improving crop yield and quality with bioregulatory lighting. Greenhouse Product News, 31(3), 22–25.

Kusuma, P., & Bugbee, B. (2021). Optimal blue photon fraction for lettuce and tomato growth depends on background spectrum and photon flux density. Frontiers in Plant Science, 12, 601619.

Kusuma, P., Pattison, P. M., & Bugbee, B. (2020). From physics to fixtures to food: current and potential LED efficacy. Horticultural Research, 7(1), 1–9.

Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry, F4.3.1–F4.3.8.

Liu, H., Liu, B., Zhao, C., Pepper, M., & Lin, C. (2011). The blue light-dependent phosphorylation of the CCE domain determines the photosensitivity of Arabidopsis CRY2. The Plant Cell, 23(3), 1052–1063.

Liu, W., Zou, J., Zhang, J., Fang, H., Zhang, Y., & Wang, Y. (2022). LED spectrum affects morphology and flowering time of Eustoma grandiflorum (Raf.) Shinn. Scientia Horticulturae, 293, 110695.

Massa, G. D., Kim, H. H., Wheeler, R. M., & Mitchell, C. A. (2008). Plant productivity in response to LED lighting. HortScience, 43(7), 1951–1956.

McConnell, D. B. (1978). The indoor gardener’s companion: A definitive, color-illustrated guide to the selection and care of houseplants. Van Nostrand Reinhold Company.

Mehta, R., Singh, R., Singh, P. K., & Kumar, D. (2021). Effects of different LED light qualities on the growth, flowering, and photosynthetic pigments of marigold (Tagetes erecta L.). Journal of Plant Growth Regulation, 40(3), 1133–1144.

Mitchell, C. A. (2022). History of controlled environment horticulture: Indoor farming and its key technologies. HortScience, 57(2), 247–256.

Mishra, A., & Singh, S. P. (2020). Effect of light quality on growth and flowering of ornamental plants. Advances in Horticultural Science, 34(2), 141–149.

Morales, L. O., Tegelberg, R., Brosché, M., & Kangasjärvi, J. (2016). Plant responses to light quality in urban green areas. Environmental Pollution, 218, 163–170.

Mukherjee, S., Ghosh, A., & Roy, S. (2019). LED lighting in horticulture: Growth and quality improvement in indoor cultivation. Journal of Applied Horticulture, 21(2), 111–117.

Nelson, J. A., & Bugbee, B. (2014). Economic analysis of greenhouse lighting: Light emitting diodes vs high intensity discharge fixtures. PLoS ONE, 9(12), e99010.

Nguyen, Q. T., Choi, H. G., Kim, H. J., & Kim, J. S. (2017). Growth and physiological responses of lettuce grown under LED light sources. Horticulture Environment and Biotechnology, 58(5), 523–532.

Ohyama, T., Morita, R., & Fujita, K. (2015). Study on energy-saving performance of indirect evaporative air cooler in a subtropical climate. Energy and Buildings, 88, 14–23.

Olle, M., & Viršile, A. (2013). The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agricultural and Food Science, 22(2), 223–234.

Paradiso, R., & Proietti, S. (2022). Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. Journal of Plant Growth Regulation, 41(2), 742–780.

Paucek, I., Appolloni, E., Pennisi, G., Quaini, S., Gianquinto, G., & Orsini, F. (2020). LED lighting systems for horticulture: Business growth and global distribution. Sustainability, 12(19), 7516.

Pinho, P., Jokinen, K., & Halonen, L. (2012). Horticultural lighting—present and future challenges. Light Research and Technology, 44(4), 427–437.

Proietti, S., Scariot, V., De Pascale, S., & Paradiso, R. (2022). Flowering mechanisms and environmental stimuli for flower transition: Bases for production scheduling in greenhouse floriculture. Plants, 11(3), 432.

PW (Proven Winners) The Brand Gardener Trust. Indoor Plant Care 101-The Ultimate Houseplant Growing Guide.

Ramanjineyulu, M., Rao, M. S., Siddiqua, A., & Khayum, A. (2024). Pruning in horticulture: A blend of art and science. Journal of Scientific Research and Reports, 30(10), 313–329.

Salehi Sardoei, A. (2014). Plant growth regulators effects on the growth and photosynthetic pigments on three indoor ornamental plants. European Journal of Experimental Biology, 4(2), 311–318.

Shagol, C. C., Kim, K. J., SeungWon Han, Jeong, N. R., Kim, H. J., Jung, Y. B., & Yun, H. K. (2018). Identification and classification of indoor plants according to light intensity requirements for botanical IoT application. Journal of People, Plants, and Environment, 21(5), 329–341.

Simpson, G. C. (2004). The autonomous pathway: Epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Current Opinion in Plant Biology, 7(5), 570–574.

Srikanth, A., & Schmid, M. (2011). Regulation of flowering time: All roads lead to Rome. Cellular and Molecular Life Sciences, 68(12), 2013–2037.

Sugano, S., Ishii, M., & Tanabe, S. (2024). Adaptation of indoor ornamental plants to various lighting levels in growth chambers simulating workplace environments. Scientific Reports, 14, 17424.

Sugiono, S., Swara, E., Wijanarko, W., & Sulistyarini, D. H. (2017). Investigating the impact of ornamental plants correlated with indoor thermal comfort and eco-energy. International Review of Civil Engineering (I.RE.C.E.), 8(5).

Sung, S., & Amasino, R. M. (2005). Remembering winter: Toward a molecular understanding of vernalization. Annual Review of Plant Biology, 56, 491–508.

Tan, C. L., Wong, N. H., Tan, P. Y., Ismail, M., & Wee, L. Y. (2017). Growth light provision for indoor greenery: A case study. Energy and Buildings, 144, 207–217.

Thomas, B., & Vince-Prue, D. (1996). Daylength perception in short-day plants (2nd ed.). Academic Press.

Trivellini, A., Toscano, S., Romano, D., & Ferrante, A. (2023). LED lighting to produce high-quality ornamental plants. Plants, 12(8), 1667.

Van Delden, S. H., SharathKumar, M., Butturini, M., Graamans, L. J. A., Heuvelink, E., Kacira, M., Kaiser, E., Klamer, R. S., Klerkx, L., & Kootstra, G. (2021). Current status and future challenges in implementing and upscaling vertical farming systems. Nature Food, 2, 944–956.

Wang, J. W. (2014). Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany, 65(17), 4723–4730.

Weller, J. L., & Kendrik, R. E. (2015). Photomorphogenesis and photoperiodism in plants. In L. O. Bjorn (Ed.), Photobiology: The science of light and life (pp. 299–321). Springer.

Xu, Y. (2019). Nature and source of light for plant factory. In M. Anpo, H. Fukuda, & T. Wada (Eds.), Plant Factory Using Artificial Light (pp. 47–69). Elsevier.

Sayfalar

43-56

Yayınlanan

14 Ocak 2026

Lisans

Lisans