Bitkilerde Böceklere Karşı CRISPR-CAS ile Genom Düzenleme
Özet
CRISPR-Cas’ın böcek veya bitki genomlarındaki DNA dizilerini değiştirme yeteneğinden hareketle kültür bitkilerinde zarar yapan böceklerle mücadelede kullanım olanakları ve uygulamaları ile ilgili çok sayıda çalışma yapılmaya başlamıştır. Bu derlemede CRISPR/Cas ile genom düzenleme çalışmaları hem yöntem hem de uygulama anlamında ayrıntılı olarak ele alınmıştır. Böceklerde ve bitkilerde Crispr/Cas uygulama yöntemleri ayrı ayrı ortaya konulmuş olup, müdahale edilen genler ve uygulamaları detaylarıyla açıklanmıştır. Gelecekte böceklere karşı mücadele yönetiminde olasılıklar da değerlendirilmiştir.
Referanslar
FAOSTAT. The State of Food Security and Nutrition in the World; 2017, FAO: Rome, Italy.
Scheben A, Wolter F, Batley J, et al. Towards CRISPR/Cas crops–bringing together genomics and genome editing. New Phytologist. 2017; 216, 682–698.
Broekgaarden C, Snoeren TA, Dicke M, et al. Exploiting natural variation to identify insect-resistance genes. Plant Biotechnology Journal. 2011; 9, 819–825.
Zong Y, Wang Y, Li C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology. 2017; 35, 438.
Wu K, Shirk PD, Taylor CE, et al. CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in fall armyworm moth (Spodoptera frugiperda). PLoS ONE. 2018; 13: e0208647.
Marraffini LA. The CRISPR-Cas system of Streptococcus pyogenes: Function and applications. In Streptococcus pyogenes: Basic biology to clinical manifestation. 2016. 1st edn. Ferretti JJ, Stevens DL, Fischetti VA eds. University
Yin KQ, Gao CX, Qiu JL. Progress and prospects in plant genome editing. Nature Plants. 2017; 3, 17107.
Mao Y, Botella JR, Zhu JK. Heritability of targeted gene modifications induced by plant-optimized CRISPR systems. Cellular and Molecular Life Sciences. 2017; 74, 1075–1093.
Mir A, Alterman JF, Hassler, MR, et al. Heavily and fully modified RNAs guide efficient SpyCas9-mediated genome editing. Nature Communications. 2018; 9, 2641.
Handler AM. Prospects for using genetic transformation for improved SIT and new biocontrol methods. Genetica; 2002, 116, 137–149.
Schetelig MF, Targovska A, Meza JS, et al. Tetracycline-suppressible female lethality and sterility in the Mexican fruit fly, Anastrepha ludens. Insect Molecular Biology. 2016; 5, 500–508.
Ogaugwu CE, Schetelig MF, Wimmer EA. Transgenic sexing system for Ceratitis capitata (Diptera: Tephritidae) based on female-specific embryonic lethality. Insect Biochemistry and Molecular Biology. 2013; 43, 1–8.
Upadhyay SK. Genome Engineering for Crop Improvement; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 1–394.
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014; 157:1262–1278.
Sorek R, Kunin V, Hugenholtz P. CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Reviews Microbiology. 2008; 6:181–186.
Liu Y, Ma S, Wang X, et al. Highly efficient multiplex targeted mutagenesis and genomic structure variation in Bombyx mori cells using CRISPR/Cas9. Insect Biochemistry and Molecular Biology 2014; 49:35–42.
Han X, Liu Z, Chan JM, et al. CRISPR-Cas9 delivery to hard-to transfect cells via membrane deformation. Science Advances. 2015; 1(7):1500454.
Schulte C, Leboulle G, Otte M, et al. Honey bee promoter sequences for targeted gene expression. Insect Molecular Biology. 2013; 22(4), 399-410.
Pazmiño‐Ibarra V, Mengual‐Martí A, Targovnik, AM, et al. Improvement of baculovirus as protein expression vector and as biopesticide by CRISPR/Cas9 editing. Biotechnology and Bioengineering. 2019; 116(11), 2823-2833.
Kondo S, Ueda R. Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics. 2013; 195(3):715–721.
Sebo ZL, Lee HB, Peng Y, et al. A simplified and efficient germline-specific CRISPR/Cas9 system for Drosophila genomic engineering. Fly. 2014;8(1):52–57.
Singh S, Rahangdale S, Pandita S, et al. CRISPR/Cas9 for insect pests management: a comprehensive review of advances and applications. Agriculture. 2022; 12(11), 1896.
Asad M, Chang Y, Liao J, et al. CRISPR/Cas9 Genome Editing in the Diamondback Moth: Current Progress, Challenges, and Prospects. International Journal of Molecular Sciences. 2025;26(4), 1515.
Ji SX, Bi SY, Wang XD, et al. First report on CRISPR/Cas9-based genome editing in the destructive invasive pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Frontiers in Genetics. 2022;13, 865622.
Mathur F, Arora A. CRISPR-based genetic control strategies for insect pests to mitigate classical insecticidal approaches. In Gene Editing in Plants: CRISPR-Cas and Its Applications (pp. 667-707), 2024. Singapore: Springer Nature Singapore.
Chen K, Wang Y, Zhang R, et al. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology. 2019;70:667–697.
Ran Y, Liang Z, Gao C. Current and future editing reagent delivery systems for plant genome editing. Science China Life Sciences. 2017;60(5):490–505.
Li Z, Liu ZB, Xing A, et al. Cas9-guide RNA directed genome editing in soybean. Plant Physiology. 2015;169(2):960–970.
Svitashev S, Schwartz C, Lenderts B, et al. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nature Communication. 2016;7(1):1–7.
Shan Q, Wang Y, Chen K, et al. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Molecular Plant. 2013a;6(4):1365–1368.
Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology. 2013b; 31(8):686–688.
Kumagai MH, Donson J, Della-Cioppa G, et al. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proceedings of the National Academy of Sciences, 1995, USA, 92, pp. 1670-1683.
Moon TT, Maliha IJ, Khan AAM, et al. CRISPR-Cas genome editing for insect pest stress management in crop plants. Stresses. 2022;2(4), 493-514.
Rathinam M, Mishra P, Mahato AK, et al. Comparative transcriptome analyses provide novel insights into the differential response of Pigeon pea (Cajanus cajan L.) and its wild relative (Cajanus platycarpus (Benth.) Maesen) to herbivory by Helicoverpa armigera (Hübner). Plant Molecular Biology. 2019;101, 163–182.