İklim Değişikliğinin Tozlaştırıcılar Üzerine Etkisi

Özet

İklim değişikliği, küresel sıcaklık artışları, yağış düzensizlikleri ve aşırı hava olayları aracılığıyla, ekosistemlerin temel bileşenlerini tehdit eden çok yönlü bir süreçtir. Özellikle, tarımsal bitki çeşitlerinin %75'inden fazlasının üremesi için hayati rol oynayan tozlaştırıcı böcek populasyonlarında önemli azalmalar gözlemlenmektedir. İklim değişikliği bu azalmanın başlıca itici gücü olarak değerlendirilmektedir. Bu durumun en kritik yönlerinden biri, bitkiler ve tozlaştırıcılar arasındaki karşılıklı evrimleşmiş ilişkinin (fenolojik uyumun) bozulmasıdır. Sıcaklık artışları, böceklerin metabolizma hızlarını, büyüme, üreme kapasitelerini ve hayatta kalma oranlarını olumsuz etkilerken, bitki çiçeklenme dönemleriyle böceklerin yaşam döngüleri arasındaki uyumsuzluk besin kaynaklarını tehlikeye atmaktadır. Ayrıca, kuraklık ve sel gibi aşırı hava olayları böceklerin kış uykusu (diyapoz) süreçlerini bozmakta ve gelecek nesillerin hayatta kalma şansını azaltmaktadır. Arılar gibi ana tozlaştırıcı grupların koloni büyüklüklerinin azalması, larva gelişimlerinin bozulması ve sıcaklık stresine duyarlılıklarının artması, bu tehdidin ciddiyetini göstermektedir. Tozlaştırıcıların varlığını korumak ve ekosistem hizmetlerinin devamlılığını sağlamak için sürdürülebilir tarım, doğal habitatların korunması ve iklim değişikliğine dirençli politikaların benimsenmesi yaşamsal öneme sahiptir.

Referanslar

Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the National Academy of Sciences of the United States of America, 274(1608), 303-313. https://doi.org/10.1098/rspb.2006.3721

Rader, R., Bartomeus, I., Garibaldi, L. A., Garratt, M. P., Howlett, B. G., Winfree, R., ... & Woyciechowski, M. (2016). Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences, 113(1), 146-151.https://doi.org/10.1073/pnas.1517092112

Ollerton, J. (2017). Pollinator diversity: distribution, ecological function, and conservation. Annual Review of Ecology, Evolution, and Systematics, 48(1), 353-376.https://doi.org/10.1146/annurev-ecolsys-110316-022919

Muinde, J., & Katumo, D. M. (2024). Beyond bees and butterflies: the role of beetles in pollination system. Journal for Nature Conservation, 77, 126523. https://doi.org/10.1016/j.jnc.2023.126523

Winfree, R., Bartomeus, I., & Cariveau, D. P. (2011). Native pollinators in anthropogenic habitats. annual review of Ecology, Evolution, and Systematics, 42(1), 1-22. https://doi.org/10.1146/annurev-ecolsys-102710-145042

Thomann, M., Imbert, E., Devaux, C., & Cheptou, P. O. (2013). Flowering plants under global pollinator decline. Trends in Plant Science, 18(7), 353-359. doi: 10.1016/j.tplants.2013.04.002

Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229), 1255957. doi: 10.1126/science.1255957

Janousek, W. M., Douglas, M. R., Cannings, S., Clément, M. A., Delphia, C. M., Everett, J. G., ... & Graves, T. A. (2023). Recent and future declines of a historically widespread pollinator linked to climate, land cover, and pesticides. Proceedings of the National Academy of Sciences, 120(5), e2211223120. https://doi.org/10.1073/pnas.221122312

Williams, N. M., & Hemberger, J. (2023). Climate, pesticides, and landcover drive declines of the western bumble bee. Proceedings of the National Academy of Sciences, 120(7), e2221692120. https://doi.org/10.1073/pnas.2221692120

Brunet, J., & Fragoso, F. P. (2024). What are the main reasons for the worldwide decline in pollinator populations?. CABI Reviews, (2024). 19(1) https://doi.org/10.1079/cabireviews.2024.0016

Minachilis, K., Kougioumoutzis, K., & Petanidou, T. (2021). Climate change effects on multi-taxa pollinator diversity and distribution along the elevation gradient of Mount Olympus, Greece. Ecological Indicators, 132, 108335. https://doi.org/10.1016/j.ecolind.2021.108335

Zattara, E. E., & Aizen, M. A. (2021). Worldwide occurrence records suggest a global decline in bee species richness. One Earth, 4(1), 114-123. doi: 10.1016/j.oneear.2020.12.005

Türkeş, M. (2022). İklim diplomasisi ve iklim değişikliğinin ekonomi politiği. Bilim ve Ütopya, 332, 31-45.

Lee H, Calvin K, Dasgupta D, Krinner G, Mukherji A, Thorne P, vd. IPCC, 2023: Climate change 2023: Synthesis report, summary for policymakers. Contribution of working groups i, II and III to the sixth assessment report of the intergovernmental panel on climate change [core writing team, h. Lee and j. Romero (eds.)]. IPCC, geneva, Switzerland. 2023 [Accessed: 13 Ekim 2025]; Erişim adresi: https://mural.maynoothuniversity.ie/17886/

Demirbaş, M., & Aydın, R. (2020). 21. Yüzyılın en büyük tehdidi: küresel iklim değişikliği. Ecological Life Sciences, 15(4), 163-179.

Neumann, P., & Straub, L. (2023). Beekeeping under climate change. Journal of Apicultural Research, 62(5), 963-968. https://doi.org/10.1080/00218839.2023.2247115

Pörtner, H. O., Roberts, D. C., Adams, H., Adelekan, I., Adler, C., Adrian, R., ... & Zaiton Ibrahim, Z. (2022). Technical summary. Climate change, 37-118.

van Eeden LM, Nimmo D, Mahony M, Herman K, Ehmke G, Driessen J, vd. Impacts of the unprecedented 2019-2020 bushfires on Australian animals. 2020 [13 Ekim 2025]; Erişim adresi: https://researchoutput.csu.edu.au/en/publications/impacts-of-the-unprecedented-2019-2020-bushfires-on-australian-an

Sepúlveda, Y., Nicholls, E., Schuett, W., & Goulson, D. (2024). Heatwave-like events affect drone production and brood-care behaviour in bumblebees. PeerJ, 12, e17135. https://doi.org/10.7717/peerj.17135

Korkmaz, K. (2007). Küresel Isınma ve Tarımsal Uygulamalara Etkisi. Alatarım Dergisi, 6(2), 43-49.

Türkeş, M. (2020). İklim değişikliğinin tarimsal üretim ve gida güvenliğine etkileri: bilimsel bir değerlendirme. Ege Coğrafya Dergisi, 29(1), 125-149.

Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., ... & Waterfield, T. (2018). Global Warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Sustainable Development, and Efforts to Eradicate Poverty, 32.

Gaspar P, Anderson D, Boone C, Davey M, Latif M, Le Traon PY, vd. The DUACS project: Towards operational use of altimeter data in coupled ocean-atmosphere models for climate studies and forecasts. In: Elsevier Oceanography Series [İnternet]. Elsevier; 2002 [13 Ekim 2025]. s. 393-4. Erişim adresi: https://www.sciencedirect.com/science/article/pii/S0422989402800459

Jones, R. A., & Qualset, C. O. (1984). Breeding crops for environmental stress tolerance. In Applications of genetic engineering to crop improvement (pp. 305-340). Dordrecht: Springer Netherlands.

Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 31(1), 11-38. https://doi.org/10.1111/j.1365-3040.2007.01727.x

Akın, G. (2006). Küresel ısınma, nedenleri ve sonuçları. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 46(2), 29-43.

Colinet, H., Sinclair, B. J., Vernon, P., & Renault, D. (2015). Insects in fluctuating thermal environments. Annual Review of Entomology, 60, 123-140. https://doi.org/10.1146/annurev-ento-010814-021017

Barnett, K. L., & Facey, S. L. (2016). Grasslands, invertebrates, and precipitation: a review of the effects of climate change. Frontiers in Plant Science, 7, 1196. https://doi.org/10.3389/fpls.2016.01196

Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L., & Totland, Ø. (2009). How does climate warming affect plant‐pollinator interactions?. Ecology Letters, 12(2), 184-195. doi: 10.1111/j.1461-0248.2008.01269.x

Donnelly, A., Caffarra, A., & O’Neill, B. F. (2011). A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. International Journal of Biometeorology, 55(6), 805-817. https://doi.org/10.1007/s00484-011-0426-5

Berg, M. P., Kiers, E. T., Driessen, G., Van Der HEIJDEN, M. A. R. C. E. L., Kooi, B. W., Kuenen, F., ... & Ellers, J. (2010). Adapt or disperse: understanding species persistence in a changing world. Global Change Biology, 16(2), 587-598. doi: 10.1111/j.1365-2486.2009.02014.x

Memmott, J., Craze, P. G., Waser, N. M., & Price, M. V. (2007). Global warming and the disruption of plant–pollinator interactions. Ecology Letters, 10(8), 710-717. doi: 10.1111/j.1461-0248.2007.01061.x

Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals?. Oikos, 120(3), 321-326. doi: 10.1111/j.1600-0706.2010.18644.x

Dukes, J. S., Pontius, J., Orwig, D., Garnas, J. R., Rodgers, V. L., Brazee, N., ... & Ayres, M. (2009). Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict?. Canadian Journal of Forest Research, 39(2), 231-248. https://doi.org/10.1139/X08-17

Bhagarathi, L. K., & Maharaj, G. (2023). Impact of climate change on insect biology, ecology, population dynamics, and pest management: A critical review. World Journal of Advanced Research and Reviews, 19(3), 541-568. https://doi.org/10.30574/wjarr.2023.19.3.1843

Regina, T., Chamola, A., & Ghosh, C. (2024). The Impact Of Climate Change On Insects. Environment and Ecology, 42, 1774-1782.https://doi.org/10.60151/envec/DXDR8910

Ostap-Chec, M., Kierat, J., Kuszewska, K., & Woyciechowski, M. (2021). Red mason bee (Osmia bicornis) thermal preferences for nest sites and their effects on offspring survival. Apidologie, 52(3), 707-719.doi: 10.1007/s13592-021-00858-6

Ramos‐Jiliberto, R., Moisset de Espanés, P., & Vázquez, D. P. (2020). Pollinator declines and the stability of plant–pollinator networks. Ecosphere, 11(4), e03069. doi:10.1002/ecs2.3069

Marshall, L., Perdijk, F., Dendoncker, N., Kunin, W., Roberts, S., & Biesmeijer, J. C. (2020). Bumblebees moving up: shifts in elevation ranges in the Pyrenees over 115 years. Proceedings of the Royal Society B, 287(1938), 20202201. https://doi.org/10.1098/rspb.2020.2201

Skendžić, S., Zovko, M., Pajač Živković, I., Lešić, V., & Lemić, D. (2021). Effect of climate change on introduced and native agricultural invasive insect pests in Europe. Insects, 12(11), 985. https://doi.org/10.3390/insects12110985

Bale, J. S., & Hayward, S. A. L. (2010). Insect overwintering in a changing climate. Journal of Experimental Biology, 213(6), 980-994. https://doi.org/10.1242/jeb.037911

Shrestha, S. (2019). Effects of climate change in agricultural insect pest. Acta Scientific Agriculture, 3(12), 74-80. doi: 10.31080/ASAG.2019.03.0727

Gordo, O., & Sanz, J. J. (2006). Temporal trends in phenology of the honey bee Apis mellifera (L.) and the small white Pieris rapae (L.) in the Iberian Peninsula (1952–2004). Ecological Entomology, 31(3), 261-268.

Martinet, B., Lecocq, T., Smet, J., & Rasmont, P. (2015). A protocol to assess insect resistance to heat waves, applied to bumblebees (Bombus Latreille, 1802). PloS One, 10(3), e0118591. https://doi.org/10.1371/journal.pone.0118591

Zambra, E., Martinet, B., Brasero, N., Michez, D., & Rasmont, P. (2020). Hyperthermic stress resistance of bumblebee males: test case of Belgian species. Apidologie, 51(5), 911-920. https://doi.org/10.1007/s13592-020-00771-4

Walters, J., Zavalnitskaya, J., Isaacs, R., & Szendrei, Z. (2022). Heat of the moment: extreme heat poses a risk to bee–plant interactions and crop yields. Current Opinion in Insect Science, 52, 100927. https://doi.org/10.1016/j.cois.2022.100927

Vanderplanck, M., Martinet, B., Carvalheiro, L. G., Rasmont, P., Barraud, A., Renaudeau, C., & Michez, D. (2019). Ensuring access to high-quality resources reduces the impacts of heat stress on bees. Scientific Reports, 9(1), 12596. https://doi.org/10.1038/s41598-019-49025-z

Greenop, A., Mica-Hawkyard, N., Walkington, S., Wilby, A., Cook, S. M., Pywell, R. F., & Woodcock, B. A. (2020). Equivocal evidence for colony level stress effects on bumble bee pollination services. Insects, 11(3), 191. https://doi.org/10.3390/insects11030191

Sayfalar

55-64

Yayınlanan

24 Aralık 2025

Lisans

Lisans