Nörotoksik İnsektisitlerin Polinatör Arılar Üzerindeki Etkileri
Özet
Referanslar
Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345-353.doi: 10.1016/j.tree.2010.01.007
Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303-313. doi:10.1098/rspb.2006.3721
Allsopp, M. H., De Lange, W. J., & Veldtman, R. (2008). Valuing insect pollination services with cost of replacement. PloS One, 3(9), e3128.doi:10.1371/journal.pone.0003128
FAO. Pesticides use and trade – 1990–2022. Report No.: 89. (26.09.2025 https://openknowledge.fao.org/server/api/core/bitstreams/a8a8c2c8-ee36-42e8-a619-7e73c8daf8a6/content adresinden ulaşılmıştır).
Casida, J. E., & Durkin, K. A. (2013). Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annual Review of Entomology, 58(1), 99-117. doi:10.1146/annurev-ento-120811-153645
Favaro, R., Garrido, P. M., Bruno, D., Braglia, C., Alberoni, D., Baffoni, L., ... & Angeli, S. (2023). Combined effect of a neonicotinoid insecticide and a fungicide on honeybee gut epithelium and microbiota, adult survival, colony strength and foraging preferences. Science of the Total Environment, 905, 167277. doi:10.1016/j.scitotenv.2023.167277
O'Reilly, A. D., & Stanley, D. A. (2023). Solitary bee behaviour and pollination service delivery is differentially impacted by neonicotinoid and pyrethroid insecticides. Science of the Total Environment, 894, 164399. doi:10.1016/j.scitotenv.2023.164399
Straub, F., Birkenbach, M., Leonhardt, S. D., Ruedenauer, F. A., Kuppler, J., Wilfert, L., & Ayasse, M. (2023). Land-use-associated stressors interact to reduce bumblebee health at the individual and colony level. Proceedings of the Royal Society B: Biological Sciences, 290(2008), 20231322. doi:10.1098/rspb.2023.1322
Singh, G., & Rana, A. (2025). Honeybees and colony collapse disorder: understanding key drivers and economic implications. Proceedings of the Indian National Science Academy, 1-17.doi:10.1007/s43538-025-00399-x
Williamson, S. M., Moffat, C., Gomersall, M. A., Saranzewa, N., Connolly, C. N., & Wright, G. A. (2013). Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees. Frontiers in Physiology, 4, 13. doi:10.3389/fphys.2013.00013
Paoli, M., & Giurfa, M. (2024). Pesticides and pollinator brain: How do neonicotinoids affect the central nervous system of bees?. European Journal of Neuroscience, 60(8), 5927-5948. doi:10.1111/ejn.16536
Kojima, T., & Yamato, S. (2025). Pyrethrins inhibit feeding in flies by irritating their oral taste organs through intrinsic neurotoxic actions. Pesticide Biochemistry and Physiology, 106518. doi:10.1016/j.pestbp.2025.106518
Schneider, C. W., Tautz, J., Grünewald, B., & Fuchs, S. (2012). RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PloS One, 7(1), e30023. doi:10.1371/journal.pone.0030023
Lämsä, J., Kuusela, E., Tuomi, J., Juntunen, S., & Watts, P. C. (2018). Low dose of neonicotinoid insecticide reduces foraging motivation of bumblebees. Proceedings of the Royal Society B: Biological Sciences, 285(1883), 20180506. doi:10.1098/rspb.2018.0506
Decourtye, A., Devillers, J., Cluzeau, S., Charreton, M., & Pham-Delègue, M. H. (2004). Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicology and Environmental Safety, 57(3), 410-419. doi:10.1016/j.ecoenv.2003.08.001
Aliouane, Y., El Hassani, A. K., Gary, V., Armengaud, C., Lambin, M., & Gauthier, M. (2009). Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior. Environmental Toxicology and Chemistry, 28(1), 113-122. doi:10.1897/08-110.
Aguiar, J. M. R. B. V., Nocelli, R. C. F., Giurfa, M., & Nascimento, F. S. (2023). Neonicotinoid effects on tropical bees: Imidacloprid impairs innate appetitive responsiveness, learning and memory in the stingless bee Melipona quadrifasciata. Science of The Total Environment, 877, 162859. doi:10.1016/j.scitotenv.2023.162859
Gill, R. J., Ramos-Rodriguez, O., & Raine, N. E. (2012). Combined pesticide exposure severely affects individual-and colony-level traits in bees. Nature, 491(7422), 105-108. doi:10.1038/nature11585
Whitehorn, P. R., O’connor, S., Wackers, F. L., & Goulson, D. (2012). Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science, 336(6079), 351-352. doi: 10.1126/science.1215025
Wu-Smart, J., & Spivak, M. (2016). Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development. Scientific Reports, 6(1), 32108. doi:10.1038/srep32108
Buluş, I. Y., Uzun, A., Demirözer, O., & Gösterit, A. (2020). Effects of acetamiprid on brood development in bumblebees, Bombus terrestris. Ziraat Fakültesi Dergisi, 15(1), 91-99.
Fukuto, T. R. (1990). Mechanism of action of organophosphorus and carbamate insecticides. Environmental Health Perspectives, 87, 245-254. doi:10.1289/ehp.9087245
Zhou, T., Zhou, W., Wang, Q., Dai, P. L., Liu, F., Zhang, Y. L., & Sun, J. H. (2011). Effects of pyrethroids on neuronal excitability of adult honeybees Apis mellifera. Pesticide Biochemistry and Physiology, 100(1), 35-40. doi:10.1016/j.pestbp.2011.02.001
Tomizawa, M., & Casida, J. E. (2005). Neonicotinoid insecticide toxicology: mechanisms of selective action. Annual Review of Pharmacology and Toxicology, 45(1), 247-268. doi:10.1146/annurev.pharmtox.45.120403.095930
Narahashi, T., Zhao, X., Ikeda, T., Salgado, V. L., & Yeh, J. Z. (2010). Glutamate-activated chloride channels: unique fipronil targets present in insects but not in mammals. Pesticide Biochemistry and Physiology, 97(2), 149-152. doi:10.1016/j.pestbp.2009.07.008
Raisch, T., & Raunser, S. (2023). The modes of action of ion-channel-targeting neurotoxic insecticides: lessons from structural biology. Nature Structural & Molecular Biology, 30(10), 1411-1427. doi:10.1038/s41594-023-01113-5
Morfin, N., Goodwin, P. H., Hunt, G. J., & Guzman-Novoa, E. (2019). Effects of sublethal doses of clothianidin and/or V. destructor on honey bee (Apis mellifera) self-grooming behavior and associated gene expression. Scientific Reports, 9(1), 5196. doi:10.1038/s41598-019-41365-0
Ben Abdelkader, F., Çakmak, İ., Çakmak, S. S., Nur, Z., İncebıyık, E., Aktar, A., & Erdost, H. (2021). Toxicity assessment of chronic exposure to common insecticides and bee medications on colony development and drones sperm parameters. Ecotoxicology, 30(5), 806-817. doi:10.1007/s10646-021-02416-3
Tosi, S., & Nieh, J. C. (2019). Lethal and sublethal synergistic effects of a new systemic pesticide, flupyradifurone (Sivanto®), on honeybees. Proceedings of the Royal Society B, 286(1900), 20190433. doi:10.1098/rspb.2019.0433
Tavares, D. A., Roat, T. C., Silva-Zacarin, E. C. M., Nocelli, R. C. F., & Malaspina, O. (2019). Exposure to thiamethoxam during the larval phase affects synapsin levels in the brain of the honey bee. Ecotoxicology and Environmental Safety, 169, 523-528. doi:10.1016/j.ecoenv.2018.11.048
Straub, L., Villamar-Bouza, L., Bruckner, S., Chantawannakul, P., Gauthier, L., Khongphinitbunjong, K., ... & Williams, G. R. (2016). Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proceedings of the Royal Society B: Biological Sciences, 283(1835), 20160506. doi:10.1098/rspb.2016.0506
Williams, G. R., Troxler, A., Retschnig, G., Roth, K., Yañez, O., Shutler, D., ... & Gauthier, L. (2015). Neonicotinoid pesticides severely affect honey bee queens. Scientific Reports, 5(1), 14621. doi:10.1038/srep14621
Chaimanee, V., Evans, J. D., Chen, Y., Jackson, C., & Pettis, J. S. (2016). Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. Journal of Insect Physiology, 89, 1-8. doi:10.1016/j.jinsphys.2016.03.004
Palmer, M. J., Moffat, C., Saranzewa, N., Harvey, J., Wright, G. A., & Connolly, C. N. (2013). Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nature Communications, 4(1), 1634. doi:10.1038/ncomms2648
Pereira, N. C., Diniz, T. O., & Takasusuki, M. C. C. R. (2020). Sublethal effects of neonicotinoids in bees: a review. Scientific Electronic Archives, 13(7), 142-152. doi: 10.36560/13720201120
Tsvetkov, N., Samson-Robert, O., Sood, K., Patel, H. S., Malena, D. A., Gajiwala, P. H., ... & Zayed, A. (2017). Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science, 356(6345), 1395-1397. doi: 10.1126/science.aam7470
Doublet, V., Natsopoulou, M. E., Zschiesche, L., & Paxton, R. J. (2015). Within-host competition among the honey bees pathogens Nosema ceranae and Deformed wing virus is asymmetric and to the disadvantage of the virus. Journal of Invertebrate Pathology, 124, 31-34. doi:10.1016/j.jip.2014.10.007
Stanley, D. A., Smith, K. E., & Raine, N. E. (2015). Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Scientific Reports, 5(1), 16508. doi:10.1038/srep16508
Henry, M., Beguin, M., Requier, F., Rollin, O., Odoux, J. F., Aupinel, P., ... & Decourtye, A. (2012). A common pesticide decreases foraging success and survival in honey bees. Science, 336(6079), 348-350. doi: 10.1126/science.1215039
Eiri, D. M., & Nieh, J. C. (2012). A nicotinic acetylcholine receptor agonist affects honey bee sucrose responsiveness and decreases waggle dancing. Journal of Experimental Biology, 215(12), 2022-2029. doi:10.1242/jeb.068718
Beer, K., Steffan-Dewenter, I., Härtel, S., & Helfrich-Förster, C. (2016). A new device for monitoring individual activity rhythms of honey bees reveals critical effects of the social environment on behavior. Journal of Comparative Physiology A, 202(8), 555-565. doi:10.1007/s00359-016-1103-2
Sandrock, C., Tanadini, L. G., Pettis, J. S., Biesmeijer, J. C., Potts, S. G., & Neumann, P. (2014). Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agricultural and Forest Entomology, 16(2), 119-128. doi:10.1111/afe.12041
Williams, G. R., Troxler, A., Retschnig, G., Roth, K., Yañez, O., Shutler, D., ... & Gauthier, L. (2015). Neonicotinoid pesticides severely affect honey bee queens. Scientific Reports, 5(1), 14621. doi:10.1038/srep14621
van der Sluijs, J. P., Simon-Delso, N., Goulson, D., Maxim, L., Bonmatin, J. M., & Belzunces, L. P. (2013). Neonicotinoids, bee disorders and the sustainability of pollinator services. Current Opinion in Environmental Sustainability, 5(3-4), 293-305. doi:10.1016/j.cosust.2013.05.007