And Bölgesi Pseudotahıllarının (Kinoa ve Kaniwa) Besinsel Özellikleri ve Sürdürülebilir Beslenmedeki Önemi
Özet
Referanslar
Giusti L. El género Chenopodium en Argentina: I. Números de cromosomas. Darwiniana. 1970;98–105.
Kadereit G, Gotzek D, Jacobs S, et al. Origin and age of Australian Chenopodiaceae. Organisms Diversity & Evolution. 2005;5(1):59–80.
Vega-Gálvez A, Miranda M, Vergara J, et al. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture. 2010;90(15):2541–2547.
Galwey NW, Leakey CLA, Price KR, et al. Chemical composition and nutritional characteristics of quinoa (Chenopodium quinoa Willd.). Food Sciences and Nutrition. 1989;42(4):245–261.
Tapia M. La quinua y la kañiwa: cultivos andinos. Vol. 40. Bib. Orton IICA/CATIE; 1979.
Cusack D. Quinua-grain of the Incas. Ecologist. 1984;14(1):21–31.
Jacobsen SE, Monteros C, Christiansen JL, et al. Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. European Journal of Agronomy. 2005;22:131–139.
Geerts S, Raes D, Garcia M, et al. Modeling the potential for closing quinoa yield gaps under varying water availability in the Bolivian Altiplano. Agricultural Water Management. 2009;96(11):1652–1658.
Jacobsen SE. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International. 2003;19:167–177.
Food and Agriculture Organization of the United Nations (FAOSTAT). Statistical database. Available from: https://www.fao.org/faostat [Accessed: 02.06.2024].
Galwey NW. The potential of quinoa as a multi-purpose crop for agricultural diversification: a review. Industrial Crops and Products. 1992;1(2–4):101–106.
Rodriguez JP, Jacobsen SE, Andreasen C, et al. Cañahua (Chenopodium pallidicaule): a promising new crop for arid areas. In: Emerging Research in Alternative Crops. Cham: Springer International Publishing; 2020. p. 221–243.
De Bock P, Van Bockstaele F, Muylle H, et al. Yield and nutritional characterization of thirteen quinoa (Chenopodium quinoa Willd.) varieties grown in North-West Europe—Part I. Plants. 2021;10(12):2689.
Iliadis C, Karyotis T, Jacobsen SE. Effect of sowing date on seed quality and yield of quinoa (Chenopodium quinoa) in Greece. In: Crop Development for the Cool and Wet Regions of Europe: Workshop on Alternative Crops for Sustainable Agriculture of the COST Action 814. BioCity, Turku, Finland; 1999. p. 226–231.
Iliadis C, Karyotis T, Jacobsen SE. Adaptation of quinoa under xerothermic conditions and cultivation for biomass and fibre production. In: Jacobsen SE, Mujica A, Portillo Z, eds. Memorias, Primer Taller Internacional sobre Quinua – Recursos Genéticos y Sistemas de Producción. Lima, Peru: UNALM & CIP; 2001. p. 371–378.
Jarvis DE, Hoang NV, Riley R, et al. The genome of Chenopodium quinoa. Nature. 2017;542:307–312.
Paśko P, Bartoń H, Zagrodzki P, et al. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry. 2009;115:994–998.
Prakash D, Pal M. Chenopodium: seed protein, fractionation and amino acid composition. International Journal of Food Sciences and Nutrition. 1998;49(4):271–275.
Bhargava A, Shukla S, Ohri D. Genetic variability and heritability of selected traits during different cuttings of vegetable Chenopodium. Indian Journal of Genetics and Plant Breeding. 2003;63(4):359–360.
Wilson HD. Quinua and relatives (Chenopodium sect. Chenopodium subsect. Celluloid). Economic Botany. 1990;44(Suppl 3):92–110.
Gangopadhyay G, Das S, Mukherjee KK. Speciation in Chenopodium in West Bengal, India. Genetic Resources and Crop Evolution. 2002;49(5):503–510.
Gandarillas H. Razas de Quinua. Ministerio de Agricultura, División de Investigaciones Agrícolas, Instituto Boliviano de Cultivos Andinos. Boletín Experimental. 1968;34.
Wilson HD. Artificial hybridization among species of Chenopodium sect. Chenopodium. Systematic Botany. 1980;5:253–263.
Wilson HD. Allozyme variation and morphological relationships of Chenopodium hircinum Schrader (s. lat.). Systematic Botany. 1988;13:215–228.
Danielsen S, Munk L. Evaluation of disease assessment methods in quinoa for their ability to predict yield loss caused by downy mildew. Crop Protection. 2004;23(3):219–228.
Emrani N, Maldonado-Taipe N, Hasler M, et al. Early flowering and maturity promote the successful adaptation and high yield of quinoa (Chenopodium quinoa Willd.) in temperate regions. Plants. 2024;13(20):2919.
Patiranage DS, Rey E, Emrani N, et al. Genome-wide association study in quinoa reveals selection pattern typical for crops with a short breeding history. eLife. 2022;11:e66873.
Temel İ, Keskin B. Farklı sıra arası ve sıra üzeri mesafelerinin kinoa (Chenopodium quinoa Willd.)’nın besin içeriğine etkisi. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi. 2019;5(1):110–116.
Partap T, Kapoor P. The Himalayan grain chenopods. II. Comparative morphology. Agriculture, Ecosystems & Environment. 1985;14(3–4):201–220.
Kozioł MJ. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis. 1992;5:35–68.
Palomino G, Hernández LT, de la Cruz Torres E. Nuclear genome size and chromosome analysis in Chenopodium quinoa and C. berlandieri subsp. nuttalliae. Euphytica. 2008;164(1):221–230.
Ward SM. A recessive allele inhibiting saponin synthesis in two lines of Bolivian quinoa (Chenopodium quinoa Willd.). Journal of Heredity. 2001;92:83–86.
Mujica A, Jacobsen SE. La quinua (Chenopodium quinoa Willd.) y sus parientes silvestres. Botánica Económica de los Andes Centrales. 2006;32:449–457.
Zurita-Silva A, Fuentes F, Zamora P, et al. Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Molecular Breeding. 2014;34(1):13–30.
Lescano JL. Cultivo de quinua. Universidad Nacional Técnica del Altiplano, Centro de Investigaciones en Cultivos Andinos; 1981.
Risi C, Galwey J, Galwey NW. The Chenopodium grains of the Andes: Inca crops for modern agriculture. In: Coaker TH, ed. Advances in Applied Biology. Vol. X. London: Academic Press; 1984. p. 145–216.
Cardozo A, Tapia M. Valor nutritivo. In: Tapia M, Gandarillas H, Alandia S, et al., eds. Quinoa y kañiwa. Cultivos andinos. Editorial IICA, Centro Internacional de Investigaciones para el Desarrollo (CIID), Instituto Interamericano de Ciencias Agrícolas (IICA); 1979. p. 149–192.
Bhargava A, Shukla S, Ohri D. Chenopodium quinoa: an Indian perspective. Industrial Crops and Products. 2006;23:73–87.
Davis PH. Chenopodiaceae. In: Aellen P, ed. Flora of Turkey and the East Aegean Islands. Vol. 2. Edinburgh: University Press; 1967. p. 294–300.
Gandarillas H. Genética y origen de la quinua. Ministerio de Asuntos Campesinos y Agropecuarios, La Paz, Bolivia; 1974.
Simmonds NW. The breeding system of Chenopodium quinoa I. Male sterility. Heredity. 1971;27:73–82.
Peterson A, Jacobsen SE, Bonifacio A, et al. A crossing method for quinoa. Sustainability. 2015;7(3):3230–3243.
National Research Council (NRC). Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation. Washington (DC): The National Academies Press; 1989.
Anonymous. Chenopodium pallidicaule. Available from: https://es.wikipedia.org/wiki/Chenopodium_pallidicaule#Taxonom%C3%ADa [Accessed: 07.10.2025].
Scarpati de Briceño Z. Aislamiento y caracterización de almidón de quinua (Chenopodium quinoa) y cañihua (Chenopodium pallidicaule). Revista Peruana de Química e Ingeniería Química. 1979;2(1):33–40.
Kent NL. Technology of Cereals. 3rd ed. Oxford; New York: Pergamon Press; 1983.
Repo-Carrasco R. Andean Crops and Infant Nourishment. Report B25. Helsinki: University of Helsinki, Institute of Development Studies; 1992.
Repo-Carrasco R, Espinoza C, Jacobsen SE. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Reviews International. 2003;19:179–189.
Prakash D, Nath P, Pal M. Composition, variation of nutritional content in leaves, seed protein, fat and fatty acid profile of Chenopodium species. Journal of the Science of Food and Agriculture. 1993;62:203–205.
Tan M, Temel S. Erzurum ve Iğdır şartlarında yetiştirilen farklı kinoa genotiplerinin kuru madde verimi ve bazı özelliklerinin belirlenmesi. Journal of the Institute of Science and Technology. 2017;7(4):257–263.
Dini A, Rastrelli L, Saturnino P, et al. A compositional study of Chenopodium quinoa seeds. Nahrung. 1992;36:400–404.
Wright KH, Pike OA, Fairbanks DJ, et al. Composition of Atriplex hortensis, sweet and bitter Chenopodium quinoa seeds. Food Chemistry and Toxicology. 2002;67:1383–1385.
Martínez EA. Quinoa: nutritional aspects of the rice of the Incas. In: Bazile D, Bertero D, Nieto C, eds. State of the Art Report of Quinoa in the World in 2013. Rome: FAO & CIRAD; 2015. p. 278–285.
United States Department of Agriculture (USDA). National Nutrient Database for Standard Reference Release 28 (Basic Reports). Washington, DC; 2015.
Doğdubay M, Şahin NN, Yiğit S. In the fusion cuisine approach availability of quinoa (application suggestions). Journal of Tourism & Gastronomy Studies. 2017;5(3):3–12.
Gonzalez JA, Roldán A, Gallardo M, et al. Quantitative determinations of chemical compounds with nutritional value from Inca crops: Chenopodium quinoa (“quinoa”). Plant Foods for Human Nutrition. 1989;39:331–337.
De Bruin A. Investigation of the food value of quinoa and cañihua seed. Journal of Food Science. 1963;29:872–876.
Food and Agriculture Organization/World Health Organization/United Nations University (FAO/WHO/UNU). Energy and Protein Requirements: Report of a Joint FAO/WHO/UNU Meeting. Geneva: World Health Organization; 1985.
Bhargava A, Rana TS, Shukla S, et al. Seed protein electrophoresis of some cultivated and wild species of Chenopodium. Biologia Plantarum. 2005;49:505–511.
Ahamed NT, Singhal RS, Kulkarni PR, et al. A lesser-known grain, Chenopodium quinoa: review of the chemical composition of its edible parts. Food and Nutrition Bulletin. 1998;19:61–70.
Ruales J, Nair BM. Saponins, phytic acid, tannins and protease inhibitors in quinoa (Chenopodium quinoa Willd.) seeds. Food Chemistry. 1993;48(2):137–143.
Wood SG, Lawson LD, Fairbanks DJ, et al. Seed lipid content and fatty acid composition of three quinoa cultivars. Journal of Food Composition and Analysis. 1993;6(1):41–44.
Przybylski R, Chauhan GS, Eskin NAM. Characterization of quinoa (Chenopodium quinoa) lipids. Food Chemistry. 1994;51(2):187–192.
Nsimba RY, Kikuzaki H, Konishi Y. Antioxidant activity of various extract fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chemistry. 2008;106:760–766.
Improta F, Kellems RO. Comparison of raw, washed and polished quinoa (Chenopodium quinoa Willd.) to wheat, sorghum or maize based diets on growth and survival of broiler chicks. Livestock Research for Rural Development. 2001;13(1). Available from: http://www.cipav.org.co/lrrd/lrrd13/1/impr131.htm [Accessed: 29.05.2009].
Tarade KM, Singhal RS, Jayram RV, et al. Kinetics of degradation of saponins in soybean flour (Glycine max) during food processing. Journal of Food Engineering. 2006;76:440–445.
Jacobsen SE, Dini I, Schettino O, et al. Isolation and characterization of saponins and other minor components in quinoa (Chenopodium quinoa Willd.). In: Proceedings of COST 814 Conference: Crop Development for Cool and Wet Regions of Europe. Pordenone, Italy; 2000. p. 537–540.
Geren H, Kavut YT, Topçu GD, vd. Akdeniz iklimi koşullarında yetiştirilen kinoa (Chenopodium quinoa Willd.)’da farklı ekim zamanlarının tane verimi ve bazı verim unsurlarına etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi. 2014;51(3):297–305.
Kır AE, Temel S. Iğdır Ovası kuru koşullarında farklı kinoa (Chenopodium quinoa Willd.) çeşit ve populasyonlarının tohum verimi ile bazı tarımsal özelliklerinin belirlenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2016;6(4):145–154.
Üke Ö, Kale H. Olgunlaşma döneminin kinoa (Chenopodium quinoa Willd.)’da ot verimi ve kalitesi ile gaz ve metan üretimine etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi. 2017;20(1):42–46.
Keukens AJ, De Vrije T, Van den Boom C, et al. Molecular basis of glycoalkaloid-induced membrane disruption. Biochimica et Biophysica Acta (BBA) – Biomembranes. 1995;1240:216–228.
Armah CN, Mackie AR, Roy C, et al. The membrane permeabilizing effect of avenacin A-1 involves the reorganization of bilayer cholesterol. Biophysical Journal. 1999;76:281–290.
Khattak AB, Zeb A, Bibi N, et al. Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicer arietinum L.) sprouts. Food Chemistry. 2007;104:1074–1079.
Jian YQ, Kuhn M. Characterization of Amaranthus cruentus and Chenopodium quinoa starch. Starch – Stärke. 1999;51:116–120.
Ogunbengle HN. Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. International Journal of Food Science and Nutrition. 2003;54:153–158.
Konishi Y, Hirano S, Tsuboi H, et al. Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds. Bioscience, Biotechnology, and Biochemistry. 2004;68:231–234.
Schlick G, Bubenheim DL. Quinoa: candidate crop for NASA’s controlled ecological life support systems. In: Janick J, ed. Progress in New Crops. Arlington, VA: ASHS Press; 1996. p. 632–640.
Sanders M. Estudio del secado industrial de la quinoa (Chenopodium quinoa Willd.) cultivada en Chile: efecto de la temperatura sobre su composición. Undergraduate thesis. Departamento de Ingeniería en Alimentos, Universidad de La Serena, Chile; 2009.
Becker R, Wheeler K, Lorenz A, et al. A compositional study of amaranth grain. Journal of Food Science. 1981;46:1175–1180.
Latinreco S.A. Quinua: hacia su cultivo comercial. Quito, Ecuador: Latinreco; 1990.
Bayram M, Pekacar S, Orhan DD. Kinoa ve sağlık üzerine etkileri. Gümüşhane University Journal of Health Sciences. 2018;7(2):47–57.
Koç A, Çetin MD. Investigation of some quinoa (Chenopodium quinoa) genotypes in terms of quality criteria. Journal of the Institute of Science and Technology. 2020;10(2):1396–1409.