Gelecek Perspektifleri-Yem ve Hayvan Besleme
Özet
Yem üretimi ve hayvan besleme sektörlerinde yapay zekâya entegrasyon süreci ve dijital teknolojilere yönelim birçok sektörde olduğu gibi tarım ve hayvancılıkta da büyük bir dönüşümün parçasıdır. Bu bağlamda, teknolojik dönüşüme uyum sağlamanın verimlilik ve sürdürülebilirliği arttıracağı veya kolaylaştıracağı öngörülmektedir. Bu nedenle, yem üretim tesislerinde güçlü bir dijital altyapı oluşturulması gerekmektedir. Ağ yapısının değerlendirilmesi, güvenli ve ölçeklenebilir yazılım-donanım sistemlerinin kurulması, uzman iş ekiplerinin geliştirilmesi, stratejik hedeflerin belirlenmesi ve personel eğitim programları bu dönüşümün temel bileşenleri arasında yer almaktadır. Yapay zekâ teknolojilerinin yem üretimi ve hayvan besleme alanında bireyselleştirilmiş diyet planlaması, formülasyon verimliliği, sağlık takibi, üretim verimliliği ve sürdürülebilirlik gibi alanlarda yenilikçi katkılar sunduğu ortaya konulmuştur. Bu yenilikler içerinde, genetik kökenli faktörler, bireysel besleme, yenilikçi ve alternatif yem maddeleri, mikrobiyal faktörlerin daha iyi anlaşılması, nanoteknolojik yaklaşımlar, veri analitiğinin etkin kullanımı, dijital tarım teknolojileri ve karbon ayak izi spesifik gibi farklı etkenler yer almaktadır. Ancak, hayvan refahı, veri gizliliği ve mülkiyeti, çevresel sürdürülebilirlik, emek ve sosyal adalet ile etik yönetimi sorunları bu alanda çözülmeyi beklemektedir. Dijital çiftçilik devriminin yaygınlaşması daha yeni başlıyor ve çiftçiler, bilim insanları, etik uzmanları ve tüketiciler dahil olmak üzere tüm tarafların bilinçli olarak katılımını gerektirmektedir. Sonuç olarak, bu teknoloji çiftlik sahiplerinin yerini almayacak, ancak onu benimseyen çiftlikler, onu kullanmayı reddeden çiftlikler yerine para kazanacaktır.
Referanslar
Aggarwal A, Mishra A, Tabassum N, et al. Detection of mycotoxin contamination in foods using artificial intelligence: A review. Foods, 2024;13(20), 3339. https://doi.org/10.3390/foods13203339
Almeida CF, Faria M, Carvalho J, et al. Contribution of nanotechnology to greater efficiency in animal nutrition and production. Journal of animal physiology and animal nutrition. 2024;108(5), 1430-1452. doi.org/10.1111/jpn.13973
Ang MYA, Pontes N, France C. Unsustainable burgers? Deploying carbon footprint labels to enhance sustainability perceptions of animal-based food products. Journal of retailing and consumer services. 2024;76, 103567. doi.org/10.1016/j.jretconser.2023.103567
Aro SO. Improvement in the nutritive quality of cassava and its by-products through microbial fermentation. African journal of biotechnology, 2008;7(25).
Arsalan A, Rehman AU, Younus H, et al. Nutrigenomic Potential of Mineral Nano‐Particles to Modulate Poultry Health and Performance. Journal of animal physiology and animal nutrition. 2025; (Early View). doi.org/10.1111/jpn.14119
Babina T, Fedyk A, He A, et al. Artificial intelligence, firm growth, and product innovation. Journal of financial economics. 2024;151, 103745. doi: org/10.1016/j.jfineco.2023.103745
Bami MK, Afsharmanesh M, Espahbodi M, et al. Effects of dietary nano-selenium supplementation on broiler chicken performance, meat selenium content, intestinal microflora, intestinal morphology, and immune response. Journal of trace elements in medicine and biology. 2022;69:126897. doi: 10.1016/j.jtemb.2021.126897.
Bao J, Xie Q. Artificial intelligence in animal farming: A systematic literature review. Journal of cleaner production. 2022;331, 129956. org/10.1016/j.jclepro.2021.129956
Belanche A, Hristov AN, van Lingen HJ, et al. Prediction of enteric methane emissions by sheep using an intercontinental database. Journal of cleaner production. 2023; 384, 135523. org/10.1016/j.jclepro.2022.135523
Belanche A, Newbold CJ, Morgavi DP, et al. A meta-analysis describing the effects of the essential oils blend agolin ruminant on performance, rumen fermentation and methane emissions in dairy cows. Animals. 2020;10(4), 620. org/10.3390/ani10040620
Bezen R, Edan Y, Halachmi I. Computer vision system for measuring individual cow feed intake using RGB-D camera and deep learning algorithms. Computers and electronics in agriculture. 2020;172, 105345. org/10.1016/j.compag.2020.105345
Blanc CD, Van der List M, Aly SS, et al. Blood calcium dynamics after prophylactic treatment of subclinical hypocalcemia with oral or intravenous calcium. Journal of dairy science. 2014;97(11), 6901-6906. org/10.3168/jds.2014-7927
Can L. Application of Artificial Intelligence in Animal Nutrition and Feed Science. In: 4th International Conference on Public Administration, Health and Humanity Development (PAHHD) 21 Oct 2024, Atlantis Press; 2024. 187-194. org/10.2991/978-2-38476-295-8_23
Chin S, Moniruzzaman M, Smirnova E, et al. Green metal nanotechnology in monogastric animal health: current trends and future prospects—A review. Animal Bioscience. 2024;38(1), 19. doi: 10.5713/ab.24.0506
Collavo A, Glew RH, Huang YS, et al. House cricket small-scale farming. Paoletti MG (ed). In Ecological implications of minilivestock: potential of insects, rodents, frogs and snails. Enfield, USA: Science Publishers; 2005, 519-544.
Dawkins MS. Smart farming and Artificial Intelligence (AI): How can we ensure that animal welfare is a priority? Applied animal behaviour science. 2025;283, 106519. org/10.1016/j.applanim.2025.106519
Dijkstra J, Bannink A, Congio GF, et al. Feed additives for methane mitigation: Modeling the impact of feed additives on enteric methane emission of ruminants—Approaches and recommendations. Journal of dairy science. 2025;108(1), 356-374. org/10.3168/jds.2024-25049
Dumlu B. Importance of Nano-Sized Feed Additives in Animal Nutrition. Journal of agricultural production. 2024;5(1), 55-72. https://doi.org/10.56430/japro.1433614
FEDIAF European Pet Food Annual Report 2024. Erişim: https://europeanpetfood.org/wp-content/uploads/2024/06/ FEDIAF-Annual-Review-2024_Online.pdf
Feng XY, Dijkstra J, Bannink A et al. Antimethanogenic effects of nitrate supplementation in cattle: A meta-analysis. Journal of dairy science, 2020;103(12), 11375-85. org/10.3168/jds.2020-18541
Fu C, Cheema WA, Mobashar M, et al. Insects as sustainable feed: enhancing animal nutrition and reducing livestock environmental impression. Journal of animal physiology and animal nutrition, 2025; 109(2), 280-290. org/10.1111/jpn.14055
Fusco S, Aulitto M. Microbial Enzymes for Biotechnological Applications. International journal of molecular sciences. 2025;26(5), 2040. doi: org/10.3390/ijms26052040
Gao RX, Krüger J, Merklein M. Artificial Intelligence in manufacturing: State of the art, perspectives, and future directions. CIRP Annals. 2024;73(2), 723-49. org/10.1016/j.cirp.2024.04.101
Gerber PJ, Hristov AN, Henderson B et al. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal. 2013;7(2), 220-234. doi.org/10.1017/S1751731113000876
Ghosh-Dastidar S, Adeli H. Neural network-wavelet microsimulation model for delay and queue length estimation at freeway work zones. Journal of transportation engineering. 2006;132(4),331-341. doi: org/10.1061/(ASCE)0733-947X(2006)132:4(331)
Glencross B. Introduction of feed and feeding management. Kumar V (Ed.) In Feed and Feeding for Fish and Shellfish. Academic Press; 2025. p. 3-14. doi.org/10.1016/B978-0-443-21556-8.00011-9
Goff JP, Horst RL. Oral administration of calcium salts for treatment of hypocalcemia in cattle. Journal of dairy science. 1993;76(1):101-8. doi: 10.3168/jds.S0022-0302(93)77328-2
Goldman Sachs. AI investment forecast to approach $200 billion globally by 2025. Artificial intelligence outlooks– New York City, NY. 2023;01 AUG.
Grand View Research. Enzymes industry data book 2023. (19.04.2025 tarihinde https://www.grandviewresearch.com/ industry-analysis/enzymes-industry#:~:text=The%20global %20enzymes%20market%20size,4.9%25%20from%202024%20to%202030 adresinden ulaşılmıştır).
Gunaratnam A, Thayananthan T, Thangathurai K, et al. Computer vision in livestock management and production. In Engineering Applications in Livestock Production. Academic Press. 2024. (pp. 93-128). org/10.1016/B978-0-323-98385-3.00002-5
Holzinger A, Keiblinger K, Holub P, et al. AI for life: Trends in artificial intelligence for biotechnology. New biotechnology, 2023;74, 16-24. org/10.1016/j.nbt.2023.02.001
Hosseini SH, Farhangfar A, Moradi M et al. Beyond probiotics: Exploring the potential of postbiotics and parabiotics in veterinary medicine. Research in veterinary science, 2024;167, 105133. https://doi.org/10.1016/j.rvsc.2023.105133
Howard J. Artificial intelligence: Implications for the future of work. American journal of industrial medicine, 2019;62(11), 917-926. https://doi.org/10.1002/ajim.23037
Ibrahim M, John AO, Yahaya K, et al. Effect of feeding nano-selenium supplemented diets on growth and immunological performance of broiler chickens. Research journal of veterinary sciences. 2024;17:1–7. doi: 10.3923/rjvs.2024.1.7.
Isaac-Bamgboye FJ, Mgbechidinma CL, Onyeaka H, et al. Exploring the potential of postbiotics for food safety and human health improvement. Journal of nutrition and metabolism. 2024;(1), 1868161. https://doi.org/10.1155/2024/1868161
Ittiphalin M, Arnonkijpanich B, Pathumnakul S. An artificial intelligence model to estimate the fat addition ratio for the mixing process in the animal feed industry. Journal of intelligent manufacturing. 2017;28, 219–28. https://doi.org/10.1007/s10845-014-0972-x
Jana S, Das P, Ghosh PR, et al. Collagen and Gelatin from Fish Processing By-Products for Biomedical Applications. Maqsood S (Ed.), In Fish Waste to Valuable Products. Singapore: Springer Nature; 2024. p. 91-117.
Kramer O. Genetic algorithms. Genetic Algorithm Essentials. Springer International Publishing; 2017. p. 11-19.
Kufel J, Bargieł-Łączek K, Kocot S, What Is Machine Learning, Artificial Neural Networks and Deep Learning? - Examples of Practical Applications in Medicine. Diagnostics. 2023;13(15), 2582. https://doi.org/10.3390/diagnostics13152582
Lean IJ, Golder HM, Grant TM, et al. A meta-analysis of effects of dietary seaweed on beef and dairy cattle performance and methane yield. PLoS One. 2021;16(7), e0249053.
Lei Y, Cheng M, McCarl B, et al. A Review of Options and Costs for Mitigating GHG Emissions from the U.S. Dairy Sector. Atmosphere, 2024;15(8), 926. doi: org/10.3390/atmos15080926
Li G, Zhao Y, Purswell JL, et al. Analysis of feeding and drinking behaviors of group-reared broilers via image processing. Computers and Electronics in Agriculture, 2020;175, 105596.
Li YP, Ahmadi F, Kariman K, et al. Recent advances and challenges in single cell protein (SCP) technologies for food and feed production. npj Science of food. 2024;8, 66. https://doi.org/10.1038/s41538-024-00299-2
Lu Y. Artificial intelligence: a survey on evolution, models, applications and future trends. Journal of management analytics, 2019;6(1), 1-29. doi: org/10.1080/23270012.2019.1570365
Lucas AJDS, de Oliveira LM, Da Rocha M, et al. Edible insects: An alternative of nutritional, functional and bioactive compounds. Food chemistry, 2020;311, 126022. doi: org/10.1016/j.foodchem.2019.126022
Luo W, Zhang J, Ahmmed MK, et al. Valorization of animal by-product enzymes: Advancing sustainable food processing through innovative extraction, purification, and application strategies. Trends in food science & technology, 2025;104870. doi: org/10.1016/j.tifs.2025.104870
Makkar HP, Tran G, Heuzé V et al. State-of-the-art on use of insects as animal feed. Animal feed science and technology, 2014;197, 1-33.
Mandal A, Ghosh AR. Role of artificial intelligence (AI) in fish growth and health status monitoring: a review on sustainable aquaculture. Aquaculture international. 2024;32, 2791–2820. doi: org/10.1007/s10499-023-01297-z
Melak A, Aseged T, Shitaw T. The influence of artificial intelligence technology on the management of livestock farms. International journal of distributed sensor networks, 2024(1), 8929748. doi.org/10.1155/2024/8929748
Menezes GL, Mazon G, Ferreira REP, et al. Artificial intelligence for livestock: a narrative review of the applications of computer vision systems and large language models for animal farming. Animal frontiers. 2024;14(6), 42–53. doi: org/10.1093/af/vfae048
Mitsunaga TM, Nery Garcia BL, Pereira LBR, et al. Current trends in artificial intelligence and bovine mastitis research: a bibliometric review approach. Animals. 2024;14, 2023. https://doi.org/10.3390/ani14142023
Mukhopadhyay SC, Tyagi SKS, Suryadevara NK, et al. Artificial intelligence-based sensors for next generation IoT applications: A review. IEEE Sensors journal, 2021;21(22), 24920-32.
Mustapha UF, Alhassan AW, Jiang DN, et al. Sustainable aquaculture development: a review on the roles of cloud computing, internet of things and artificial intelligence (CIA). Reviews in Aquaculture, 2021;13(4), 2076-2091. doi.org/10.1111/raq.12559
Nangul A, Bhatia R. Microorganisms: a marvelous source of single cell proteins. Journal of microbiology, biotechnology and food sciences, 2013;3(1), 15-18.
Nasiri A, Amirivojdan A, Zhao Y, et al. An automated video action recognition-based system for drinking time estimation of individual broilers. Smart agricultural technology, 2024;7, 100409. org/10.1016/j.atech.2024.100409
Neethirajan S. The significance and ethics of digital livestock farming. AgriEngineering, 2023;5(1), 488-505. https://doi.org/10.3390/agriengineering5010032
Nile SH, Baskar V, Selvaraj D, et al. Nanotechnologies in food science: applications, recent trends, and future perspectives. Nano-micro letters. 2020;12 ,45. org/10.1007/s40820-020-0383-9
Njokweni SG, Steyn A, Botes M, et al. Potential valorization of organic waste streams to valuable organic acids through microbial conversion: A South African case study. Catalysts, 2021;11(8), 964. https://doi.org/10.3390/catal11080964
Onyeaka H, Anumudu C, Okpe C, et al. Single cell protein for foods and feeds: A review of trends. The open microbioly journal, 2022;16,e187428582206160. doi.org/10.2174/18742858-v16-e2206160
Özbay-Arı M, Yılmaz-Ersan L. Yeni nesil fonksiyonel bileşenler olarak postbiyotikler ve biyoaktif özellikleri. Bursa uludağ üniversitesi ziraat fakültesi dergisi, 2024;38(2), 509-533.
Pettersson D, Pontoppidan K. Soybean meal and the potential for upgrading its feeding value by enzyme supplementation. Hany El-Shemy (Ed) Soybean-bio-active compounds. InTech, Croatia. 2013;13, 288-307.
Pico-Valencia P, Holgado-Terriza JA. The internet of things empowering the internet of pets—an outlook from the academic and scientific experience. Applied Sciences. 2025; 15(4):1722. https://doi.org/10.3390/app15041722
Pupo MR, Ferraretto LF, Nicholson CF. Effects of feeding 3-nitrooxypropanol for methane emissions reduction on income over feed costs in the United States. Journal of dairy science, 2025;108(5), 5061-5075.
Rafique N, Jan SY, Dar AH, et al. Promising bioactivities of postbiotics: A comprehensive review. Journal of agriculture and food research. 2023;14, 100708.
Ravi G, Choi JW. Data-driven intelligent feeding system for pet care. In 22nd International Conference on Control, Automation and Systems (ICCAS) 2022. p. 2013-2018.
Saar M, Edan Y, Godo A, et al. A machine vision system to predict individual cow feed intake of different feeds in a cowshed. Animal. 2022;16(1), 100432. org/10.1016/j.animal.2021.100432
Salminen S, Collado MC, Endo A, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature reviews gastroenterology & hepatology, 2021;18(9), 649-667. org/10.1038/s41575-021-00440-6
Schwan RF, Wheals AE. The microbiology of cocoa fermentation and its role in chocolate quality. Critical reviews in food science and nutrition, 2004;44(4), 205-221. org/10.1080/10408690490464104
Shafana ARF, Thariq MGM, Musthafa MM. Application of artificial intelligence in sexing of hatching eggs: present status, challenges and future direction for sustainable egg industry. In: Dutta PK, Hamad A, Haghi AK, et al. (Ed.) Food and Industry 5.0: Transforming the Food System for a Sustainable Future. Springer, 2025. https://doi.org/10.1007/978-3-031-76758-6_4
Siad O, Bouzid C. Biotech meets artificial intelligence to enhance the value of by-products in animal nutrition. Biological sciences, 2023;3(1), 353-365. org/10.55006/biolsciences.2023.03012
Suhag R, Dhiman A, Deswal G, et al. Microwave processing: A way to reduce the anti-nutritional factors (ANFs) in food grains. Lwt, 2021;150, 111960. org/10.1016/j.lwt.2021.111960
Teame T, Wang A, Xie M, et al. Paraprobiotics and postbiotics of probiotic Lactobacilli, their positive effects on the host and action mechanisms: A review. Frontiers in nutrition. 2020;7, 570344. org/10.3389/fnut.2020.570344
Toma M, Wei C. Predictive Modeling in Medicine. Encyclopedia. 2023;3(2), 590-601. doi.org/10.3390/encyclopedia3020042
Tuncel Y, Basaklar T, Smithyman M, et al. Towards smart cattle farms: automated inspection of cattle health with real-life data. In 2023 Design, automation & test in europe conference & exhibition (DATE). IEEE. 2023. p. 1-2.
United Nations, Sustainable Development, Sustainable Consumption and Production. August 23, 2023. https://sdgs.un.org/topics/sustainable-consumption-and-production.
Vargas-Bello-Pérez E, Espinoza-Sandoval OR, Gonzalez Ronquillo M, et al. The role of artificial intelligence in Latin American ruminant production systems. Animal Frontiers, 2024;14(6), 23-32. doi.org/10.1093/af/vfae034
Wang X, Dai B, Wei X, et al. Vision-based measuring method for individual cow feed intake using depth images and a Siamese network. International journal of agricultural and biological engineering, 2023;16(3), 233-239.
Wang Z, An W, Wang J, et al. Machine learning for predicting zearalenone contamination levels in pet food. Toxins. 2024;16(12):553. https://doi.org/10.3390/toxins16120553
Xia W, Jiang Y, Chen X, et al. Application of machine learning algorithms in municipal solid waste management: A mini review. Waste management & research, 2022;40(6), 609-624. org/10.1177/0734242X2110337
Yıldız AK, Özgüven MM. Determination of estrus in cattle with artificial neural networks using mobility and environmental data. Journal of agricultural faculty of gaziosmanpaşa university. 2022;39(1), 40-45.
You J, Tulpan D, Malpass MC, et al. Using machine learning regression models to predict the pellet quality of pelleted feeds. Animal feed science and technology. 2022;293, 115443. org/10.1016/j.anifeedsci.2022.115443
Zengin M, Demir E, Hamamcı F, ve ark. Süt ineklerinde doğum sonrası kalsiyum bolusu kullanımının bazı serum ve verim parametrelerine etkisi. 8. Ulusal & 4. uluslararası sürü sağlığı ve yönetimi kongresi, Antalya, 2024.
Zengin M, Sur A, İlhan Z, et al. Effects of fermented distillers grains with solubles, partially replaced with soybean meal, on performance, blood parameters, meat quality, intestinal flora, and immune response in broiler. Research in veterinary science. 2022a;150, 58-64. org/10.1016/j.rvsc.2022.06.027
Zengin M, Sur A. The effects of heat stress on rumen microbiota and feeding strategies in dairy cattle. Bilgili A, Hanedan B (Ed) Current Debates on Health Sciences: Bilgin Kültür Sanat Yayınları, Ankara, 2023. 287-97.
Zengin M. Yüksek nemli mısırla beslenen kuzularda Bacillus licheniformis kullanımının besi performansı, kan parametreleri, rumen fermentasyonu ve mikrobiyotası üzerine etkileri (Doktora tezi, Balikesir University, Balikesir, 2022b.
Zhang J, Li J. Spatial Cognitive Engine Technology. Intelligent language knowledge for cognitive engine, Elsevier Academic Press. 2023. https://doi.org/10.1016/C2021-0-02777-2
Zhang L, Li B, Sun X, et al. Intelligent fish feeding based on machine vision: A review. Biosystems engineering. 2023b;231, 133-164.
Zou X, Liu M, Li X, et al. Applications of insect nutrition resources in animal production. Journal of agriculture and food research. 2024;15, 100966. org/10.1016/j.jafr.2024.100966