Buğdaygil Tane Yemleri

Özet

Referanslar

Abah CR, Ishiwu CN, Obiegbuna JE, et al. Sorghum grains: nutritional composition, functional properties and its food applications. European Journal of Nutrition & Food Safety. 2020;12(5): 101-111. doi: 10.9734/EJNFS/2020/v12i530232

Abid M, Tian Z, Ata-Ul-Karim ST, et al. Nitrogen nutrition improves the potential of wheat (Triticum aestivum L.) to alleviate the effects of drought stress during vegetative growth periods. Frontiers in plant science. 2016;7: 981. doi : 10.3389/fpls.2016.00981

Adamczyk B, Simon J, Kitunen V, et al. Tanenler ve farklı organik azot bileşikleri ve enzimlerle karmaşık etkileşimleri: eski paradigmalar ve son gelişmeler. ChemistryOpen. 2017;6(5): 610-614. doi:10.1002/open.201700113

Akhter KT, Shozib HB, Islam MH, et al. Variations in the major nutrient composition of dominant high-yield varieties (hyvs) in parboiled and polished rice of Bangladesh. Foods. 2023; 12(21): 3997. doi: 10.3390/foods12213997

Alauddin M, Sultana A, Faruque MO, et al. Functional evaluation of fermented rice bran and extracted rice bran oil addressing for human health benefit. Journal of Oleo Science. 2024;73(4): 467-477. doi:10.5650/jos.ess23192

Alemayehu GF, Forsido SF, Tola YB, et al. Nutritional and Phytochemical Composition and Associated Health Benefits of Oat (Avena sativa) Grains and Oat‐Based Fermented Food Products. The Scientific World Journal. 2023; 17 : 2730175. doi: 10.1155/2023/2730175

Andreasen MF, Christensen LP, Meyer AS, et al. Content of phenolic acids and ferulic acid dehydrodimers in 17 Rye (Secale c ereale L.) Varieties. Journal of Agricultural and Food Chemistry. 2000;48(7): 2837-2842. doi: 10.1021/jf991266w

Ashokkumar K, Govindaraj M, Karthikeyan A, et al. Genomics-integrated breeding for carotenoids and folates in staple cereal grains to reduce malnutrition. Frontiers in genetics. 2020; 11: 414. doi: 10.3389/fnut.2022.1043655

Axe DE, Bolsen KK, Harmon DL, et al. Effect of wheat and high-moisture sorghum grain fed singly and in combination on ruminal fermentation, solid and liquid flow, site and extent of digestion and feeding performance of cattle. Journal of Animal Science. 1987; 64(3): 897-906. doi: 10.2527/jas1987.643897x

Bennett GA, & Shotwell OL. Zearalenone in cereal grains. Journal of the American Oil Chemists' Society. 1979;56(9); 812. doi: 10.1007/BF02909525

Brijs K, Bleukx W, & Delcour JA. Proteolytic activities in dormant rye (Secale cereale L.) grain. Journal of Agricultural and Food Chemistry. 1999; 47(9): 3572-3578. Doi: 10.1021/jf990070t

Burešová I, Sedláčková I, Faměra O, et al. Effect of growing conditions on starch and protein content in triticale grain and amylose content in starch. Plant Soil Environ. 1999; 56(3): 99-104. doi: 10.17221/123/2009-PSE

Butt MS, Tahir-Nadeem , Khan MKI, et al. Yulaf: Veriler arasında benzersiz. Avrupa'nın dergisi. 2008; 47: 68-79. doi: 10.1155/2023/2730175

Chandrasekara A, & Shahidi F. (2011). Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millet grains. Journal of Functional Foods. 2011; 3(3) :159-170. doi: 10.1016/j.jff.2011.03.008

Collins, HM, Burton RA, Topping DL, et al. Variability in fine structures of noncellulosic cell wall polysaccharides from cereal grains: potential importance in human health and nutrition. Cereal Chemistry.2010; 87(4): 272-282. doi: 10.1094/CCHEM-87-4-0272

Crecelius F, Streb P, Feierabend J. Malate metabolism and reactions of oxidoreduction in cold‐hardened winter rye (Secale cereale L.) leaves. Journal of Experimental Botany. 2003; 54(384):1075-1083. doi.org/10.1093/jxb/erg101

de Morais Cardoso L, Pinheiro SS, de Carvalho CWP, et al. Phenolic compounds profile in sorghum processed by extrusion cooking and dry heat in a conventional oven. Journal of Cereal Science. 2015; 65: 220-226. doi: 10.1016/j.jcs.2015.06.015

Ebeid TA, Talat El-Ratel I, Ahmad S, et al. Impact of dietary exogenous enzymes in modifying the gastrointestinal tract, antioxidative status, immunological responsiveness, and productivity in broilers: an updated review. World's Poultry Science Journal. 2025; 1-21. doi: 10.1080/00439339.2025.2507172

FAO. Cereals. [Online]. https://openknowledge.fao.org/server/api/core/bitstreams/d383664b-12eb-46a5-b4b9-80fc40138e40/content [Accessed: November 2024]

Feedipeedia. List of feeds. FEFAC. HOW MUCH CEREAL PRODUCTION GOES TO FEED LIVESTOCK [Online]. https://www.feedipedia.org/content/feeds?category=13593

Gab-Allah MA, Lijalem YG, Yu H, et al. Accurate determination of four tetracycline residues in chicken meat by isotope dilution-liquid chromatography/tandem mass spectrometry. Journal of Chromatography A. 2023; 1691: 463818. doi: 10.1016/j.chroma.2003.463818

Gaviley OV, Katerynych OO, Ionov IA, et al. Triticale: A general overview of its use in poultry production. Encyclopedia. 2024; 4(1): 395-414. doi: 10.3390/encyclopedia4010027

Gupta RK, Gangoliya SS, & Singh NK. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of food science and technology. 2015; 52(2): 676-684. doi: 10.1007/s13197-013-0978-y

Hands P, Kourmpetli S, Sharples D, et al. Analysis of grain characters in temperate grasses reveals distinctive patterns of endosperm organization associated with grain shape. Journal of Experimental Botany. 2012; 63(17): 6253-6266. doi: 10.1093/jxb/ers281

Hesseltine CW. Natural occurrence of mycotoxins in cereals. Mycopathologia et Mycologia applicata. 1974; 53(1): 141-153. doi: 10.1007/BF02127204

Jaćimović S, Kiprovski B, Ristivojević P, et al. Chemical composition, antioxidant potential, and nutritional evaluation of cultivated Sorghum Grains: A combined experimental, theoretical, and multivariate analysis. Antioxidants. 2023; 12(8): 1485. doi: 10.3390/antiox12081485

Kahlon TS, & Chow FI. In vitro binding of bile acids by rice bran, oat bran, wheat bran, and corn bran. Cereal Chemistry. 2000; 77(4): 518-521. doi: 10.1094/CCHEM.2000.77.4.518

Karuppan R, Aridi AS, & Yusof YA. Sustainable Extraction of Mango (Mangifera Indica) Seed Starch Using Distillation: A Promising Alternative to Commercial Starch Sources. Earth and Environmental Science. 2025;1470(1): 012002. doi: 10.1088/1755-1315/1470/1/012002

Kaszuba J, Kapusta I, & Posadzka Z. Content of phenolic acids in the grain of selected polish triticale cultivars and its products. Molecules. 2021; 26(3): 562. doi: 10.3390/molecules26030562

Kerienė I, Mankevičienė A, Bliznikas S, et al. Biologically active phenolic compounds in buckwheat, oats and winter spelt wheat. Zemdirbyste-Agriculture. 2015; 102(3): 289-296. doi: 10.13080/z-a.2015.102.037

Khalid W, Ali A, Arshad MS, et al. Nutrients and bioactive compounds of Sorghum bicolor L. used to prepare functional foods: a review on the efficacy against different chronic disorders. International Journal of Food Properties. 2022; 25(1): 1045-1062. doi: 10.1080/10942912.2022.2071293

Khan A, Khan NA, Bean SR, et al. Variations in total protein and amino acids in the sequenced sorghum mutant library. Plants. 2023; 12(8): 1662. doi: 10.3390/plants12081662

Kim DH, Hong SY, Kang JW, et al. Simultaneous determination of multi-mycotoxins in cereal grains collected from South Korea by LC/MS/MS. Toxins. 2017; 9(3): 106. doi: 10.3390/toxins9030106

Langyan S, Bhardwaj R, Kumari J, et al. Nutritional diversity in native germplasm of maize collected from three different fragile ecosystems of India. Frontiers in Nutrition. 2022; 9: 812599. doi: 10.3389/fnut.2022.812599

Lodge SL, Stock RA, Klopfenstein TJ, et al. Evaluation of corn and sorghum distillers byproducts. Journal of Animal Science. 1997; 75(1): 37-43. doi: 10.2527/1997.75137x

Masenya TI, Mlambo V, & Mnisi CM. Complete replacement of maize grain with sorghum and pearl millet grains in Jumbo quail diets: Feed intake, physiological parameters, and meat quality traits. PLoS One. 2021; 16(3): e0249371. doi: 10.1371/journal.pone.0249371

McAllister TA, Rode LM, Major DJ, et al. Effect of ruminal microbial colonization on cereal grain digestion. Canadian Journal of Animal Science. 1990; 70(2): 571-579. doi: 10.4141/cjas90-069

McDonal P, Greenhalgh JFD, Morgan C, Edwards R, Sinclair L, & Wilkinson R. Animal nutrition. 2021; Pearson Higher Ed.7th.

Mergoum M, Singh PK, Pena RJ, et al. Triticale: a “new” crop with old challenges. Cereals. 2009; 267-287. doi: 10.1007/978-0-387-72297-9_9

Mohamed HI, Fawzi EM, Basit A, et al. Sorghum: nutritional factors, bioactive compounds, pharmaceutical and application in food systems: a review. Phyton. 2022: 91(7); 1303. doi: 10.32604/phyton.2022.020642

Neuweiler JE, Maurer HP, & Würschum T. Long‐term trends and genetic architecture of seed characteristics, grain yield and correlated agronomic traits in triticale (× Triticosecale Wittmack). Plant breeding. 2020; 139(4); 717-729. doi: 10.1111/pbr.12821

Nikkhah A. Barley grain for ruminants: A global treasure or tragedy. Journal of Animal Science and Biotechnology. 2012: 3(1); 22. doi: 10.1186/2049-1891-3-22

Ölmez M, Kara K, Ramay MS, et al . Emmer wheat (Triticum dicoccum)–based intervention in Japanese quail’s diet and its impact on performance, carcass yield, meat fatty acids, and fecal volatile fatty acids. Tropical animal health and production. 2023; 55(4): 280. doi: 10.3390/su13126554

Philippi H, Sommerfeld V, Windisch W, et al. Interactions of zinc with phytate and phytase in the digestive tract of poultry and pigs: a review. Journal of the Science of Food and Agriculture. 2023; 103(15): 7333-7342. doi: 10.1002/jsfa.12879

Pojic M, & Tiwari U (Eds.). Innovative processing technologies for healthy grains. John Wiley & Sons. 2020.

Pontieri P, Troisi J, Calcagnile M, et al. Chemical composition, fatty acid and mineral content of food-grade white, red and black sorghum varieties grown in the mediterranean environment. Foods. 2022; 11(3): 436. doi: 10.3390/foods11030436

Preece PI, & Hobkirk R. Non‐Starchy Polysaccharıdes Of Cereal Graıns Iıı. Hıgher Molecular Gums Of Common Cereals. Journal of the Institute of Brewing. 1953; 59(5): 385-392. doi: 10.1002/j.2050-0416.1953.tb02733.x

Quinde- Axtell Z, & Baik BK. Phenolic compounds of barley grain and their implication in food product discoloration. Journal of agricultural and food chemistry. 2006; 54(26): 9978-9984. doi: 10.1021/jf060974w

Ramos -Diaz JM, Sulyok M, Jacobsen SE, et al. Comparative study of mycotoxin occurrence in Andean and cereal grains cultivated in South America and North Europe. Food Control. 2021; 130: 108260. doi: 10.1016/j.foodcont.2021.108260

Rodríguez-España M, Figueroa-Hernández CY, de Dios Figueroa-Cárdenas J, et al. Effects of germination and lactic acid fermentation on nutritional and rheological properties of sorghum: A graphical review. Current Research in Food Science. 2022; 5: 807-812. doi: 10.1016/j.crfs.2022.04.014

Rowe JB, Choct M, & Pethick DW. Processing cereal grains for animal feeding. Australian journal of agricultural research. 1999; 50(5): 721-736. doi: 10.1071/AR98163

Shahzad Z, Rouached H, & Rakha A. Combating mineral malnutrition through iron and zinc biofortification of cereals. Comprehensive Reviews in Food Science and Food Safety. 2014; 13(3): 329-346. doi: 10.1111/1541-4337.12063

Shakouri MD, Iji PA, Mikkelsen LL, et al. Intestinal function and gut microflora of broiler chickens as influenced by cereal grains and microbial enzyme supplementation. Journal of animal physiology and animal nutrition. 2009; 93(5): 647-658. doi: 10.1111/j.1439-0396.2008.00852.x

Shegro A, Shargie NG, van Biljon A, et al . Diversity in starch, protein and mineral composition of sorghum landrace accessions from Ethiopia. Journal of Crop Science and Biotechnology. 2012; 15(4): 275-280. doi: 10.1007/s12892-012-0008-z

Siegert W, Boguhn J, Maurer HP, et al. Effect of nitrogen fertilisation on the amino acid digestibility of different triticale genotypes in caecectomised laying hens. Journal of the Science of Food and Agriculture. 2017; 97(1):144-150. doi: doi.org/10.1002/jsfa.7701

Smith RL, Jensen LS, Hoveland CS, et al. Use of pearl millet, sorghum, and triticale grain in broiler diets. Journal of Production Agriculture. 1989; 2(1): 78-82. doi: 10.2134/jpa1989.0078

Soltan Y, Abdalla Filho A, Abdalla A, et al . Replacing maize with low tannin sorghum grains: lamb growth performance, microbial protein synthesis and enteric methane production. Animal Production Science. 2021; 61(13): 1348-1355. doi: 10.1071/AN20605

Statista. Cereals. [Online]. https://www.statista.com/outlook/io/agriculture/cereals/worldwide

Varjonen E, Savolainen J, Mattila L, et al. IgE‐binding components of wheat, rye, barley and oats recognized by immunoblotting analysis with sera from adult atopic dermatitis patients. Clinical & Experimental Allergy. 1994; 24(5): 481-489. doi:10.1111/j.1365-2222.1994.tb00938.x

Whitaker JR, & Granum PE. An absolute method for protein determination based on difference in absorbance at 235 and 280 nm. Analytical biochemistry. 1980; 109(1): 156-159. doi: 10.1016/0003-2697(80)90024-X

Yang Y, Iji PA, Kocher A, et al. Effects of dietary mannanoligosaccharide on growth performance, nutrient digestibility and gut development of broilers given different cereal‐based diets. Journal of animal physiology and animal nutrition. 2008; 92(6): 650-659. doi: 10.1111/j.1439-0396.2007.00761.x

Zielińska KJ, Fabiszewska AU, & Wróbel B. Impact of bacterial preparation on improvement of aerobic stability and biogas yield from meadow sward silage. Journal of Research and Applications in Agricultural Engineering. 2017; 62(4): 219-220.

Sayfalar

237-250

Yayınlanan

12 Ocak 2026

Lisans

Lisans