Toprak Kirliliğinin Bitkide Fizyolojik, Biyokimyasal ve Moleküler Etkileri

Yazarlar

Sema Karakaş Dikilitaş
Ferhat Uğurlar
Murat Dikilitaş

Özet

Dünyada ve ülkemizde artan tarımsal faaliyetler, toprakların fiziksel, kimyasal ve biyolojik yapısının bozulmasına ve çeşitli kirleticilerin (tuz, ağır metal, pestisit vb.) toprakta birikerek toprakların kirlenmesine neden olmuştur. Bu kirleticiler, bitkisel üretim açısından önemli stres faktörleri oluşturmaktadır. Stres koşullarında bitkilerde, süperoksit radikalleri (O2), hidrojen peroksit (H2O2) ve hidroksil radikalleri (OH) gibi reaktif oksijen türlerinin (ROS) miktarı artmaktadır. ROS bitkilerde proteinler, lipitler, karbohidratlar ve organik moleküler ve DNA üzerinde geri dönüşü olmayan hasarlara yol açmaktadır. Toprak kirliliğinin bitkiler üzerindeki olumsuz etkileri; iyon toksisitesi, besin dengesizliği, ROS birikimi, klorofil içeriğinde azalma, lipid peroksidasyonu (MDA), DNA hasarı ve bitki gelişiminin sınırlanması gibi fizyolojik ve biyokimyasal değişimlerle kendini göstermektedir. Bu bölümde toprak kirliliğine neden olan kirleticilerin bitki gelişimindeki fizyolojik, biyokimyasal ve moleküler düzeydeki etkileri ele alınmıştır.

Referanslar

Abdallah RS, Rachmansyah A, Yanuwiadi B. Phytoremediation of lead-contaminated soil by using Vetiver Grass (Vetiveria zizanioides L.). J Exp Life Sci. 2019;9(1):54-59.

Agarwal S, Khan S. Heavy metal phytotoxicity: DNA damage. In M. Faisal, Q. Saquib, A. A. Alatar, & A. A. Al-Khedhairy (Eds.), Cellular and Molecular Phytotoxicity of Heavy Metals (pp.157-177). Cham: Springer. doi:10.1007/978-3-030-45975-8_10.

Ahmed SF, Kumar PS, Rozbu MR, et al. Heavy metal toxicity, sources, and contaminated water and soil remediation techniques. Environ Technol Innov. 2022;25:102114. doi:10.1016/j.eti.2021.102114.

Akhtar N, Ishak MIS, Bhawani SA, et al. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water. 2021;13(19):2660. doi:10.3390/w13192660.

Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J Chem. 2019;2019:1-14. doi:10.1155/2019/6730305.

Alloway BJ. Sources of heavy metals and metalloids in soils. In B. J. Alloway (Ed.), Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability (pp.11-50). Dordrecht: Springer.

Ashraf S, Ali Q, Zahir ZA, et al. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf. 2019;174:714-727. doi:10.1016/j.ecoenv.2019.02.068.

Bai Y, Wan X, Lei M, et al. Research advances in mechanisms of arsenic hyperaccumulation of Pteris vittata: Perspectives from plant physiology, molecular biology, and phylogeny. J Hazard Mater. 2023;460:132463. doi:10.1016/j.jhazmat.2023.132463.

Ben-Amor N, Ben-Hamed K, Debez A, et al. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci. 2005;168(4):889–899.

Berková V, Berka M, Griga M, et al. Molecular mechanisms underlying flax (Linum usitatissimum L.) tolerance to cadmium: A case study of proteome and metabolome of four different flax genotypes. Plants. 2022;11(21):2931. doi:10.3390/plants11212931.

Bressan RA. (2008). Stres fizyolojisi. Bitki Fizyolojisi içinde (s. 591–620). Ankara: Palme Yayıncılık.

Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improving salt tolerance in plants. Crop Sci. 2005;45:437–448.

Chiroma TM, Ebewele RO, Hymore FK. Comparative assessment of heavy metal levels in soil, vegetables, and urban grey wastewater used for irrigation in Yola and Kano. Int Ref J Eng Sci. 2014;3(1):1-9.

Chunduri V, Kapoor P, Kumari A, et al. Biotechnological advancements in phytoremediation. In M. Kumar, M. S. Bhat, R. Prasad, & P. Ahmad (Eds.), Aquatic Contamination: Tolerance and Bioremediation (pp.165-188). Singapore: Springer Nature. 2024. doi:10.1007/978-981-99-1745-3_8.

Csuros M, Csuros C. Environ Sampl Anal Metals. 2016. Boca Raton: CRC Press.

Debez A, Saadaoui D, Slama I, et al. Responses of Batis maritima plants challenged with up to two-fold seawater NaCl salinity. J Plant Nutr Soil Sci. 2010;173(2):291–299.

Demidchik V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ Exp Bot. 2015;109:212-228. doi:10.1016/j.envexpbot.2014.06.021.

Deng THB, van der Ent A, Tang YT, et al. Nickel hyperaccumulation mechanisms: A review on the current state of knowledge. Plant Soil. 2018;423(1-2):1-11. doi:10.1007/s11104-017-3539-8.

Dikilitaş M, Karakaş S. Salts as potential environmental pollutants, their types, effects on plants, and approaches for their phytoremediation. In M. Ashraf, M. Ozturk, & M. S. A. Ahmad (Eds.), Plant Adaptation and Phytoremediation (pp.357-381). New York: Springer. 2010.

Dikilitaş M, Şimşek E, Roychoudhury A. Role of proline and glycine betaine in overcoming abiotic stresses. In A. Roychoudhury & D. Tripathi (Eds.), Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives (pp.1-25). Singapore: Wiley-Scrivener. 2020. doi:10.1002/9781119552154.ch1.

Dikilitaş M, Collins AR, Koçyiğit A, et al. DNA damage in potato plants exposed to high levels of NaCl stress. 11th Int Comet Assay Workshop (ICAW 2015), 1–4 September 2015, Antalya, Turkey, pp.1-4.

Enot MM, Weiland F, Mittal P, et al. Differential proteome analysis of the leaves of lead hyperaccumulator Rhoeo discolor (L. Her.) Hance. J Mass Spectrom. 2021;56(4):e4689. doi:10.1002/jms.4689.

Eze CN, Odoh CK, Eze EA, et al. Chromium (III) and its effects on soil microbial activities and phytoremediation potentials of Arachis hypogea and Vigna unguiculata. Afr J Biotechnol. 2018;17(38):1207-1214. doi:10.5897/AJB2018.16584.

Eickhout B, Bouwman AP, van Zeijts H. The role of nitrogen in world food production and environmental sustainability. Agric Ecosyst Environ. 2006;116:4–14.

Farooq M, Hussain M, Wakeel A et al. Salt stress in maize: Effects, resistance mechanisms, and management—A review. Agron Sustain Dev. 2015;35(2):461-481. doi:10.1007/s13593-015-0287-0.

Fathi A, Mehdiniya Afra J. Plant growth and development in relation to phosphorus: a review. Bull Univ Agric Sci Vet Med Cluj-Napoca Agric. 2023;79(1):1–10. doi:10.15835/buasvmcn-agr:2022.0012.

Feng D, Wang R, Sun X, et al. Heavy metal stress in plants: Ways to alleviate with exogenous substances. Sci Total Environ. 2023;165397. doi:10.1016/j.scitotenv.2023.165397.

Gallagher JL. Halophytic crops for cultivation at seawater salinity. Plant Soil. 1985;89:323–336.

Ghuge SA, Nikalje GC, Kadam US, et al. Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. J Hazard Mater. 2023;450:131039. doi:10.1016/j.jhazmat.2023.131039.

Goyal D, Yadav A, Prasad M, et al. Effect of heavy metals on plant growth: An overview. In M. H. Fulekar, R. Kale, & A. S. Prasad (Eds.), Contaminants in Agriculture: Sources, Impacts, and Management (pp.79-101). Cham: Springer. 2020. doi:10.1007/978-981-15-3880-6_5.

Hamed KB, Debez A, Chibani F, Abdelly C. Salt response of Crithmum maritimum, an oleagineous halophyte. Trop Ecol. 2004;45(1):151–159.

Han M, Ullah H, Yang H, et al. Cadmium uptake and membrane transport in roots of hyperaccumulator Amaranthus hypochondriacus L. Environ Pollut. 2023;331:121846. doi:10.1016/j.envpol.2023.121846.

Herppich WB, Huyskens-Keil S, Schreiner M. Effects of saline irrigation on growth, physiology and quality of Mesembryanthemum crystallinum L., a rare vegetable crop. J Appl Bot Food Qual. 2008;82(1):47–54.

Herrero M, Thorton PK, Notenbaert AM, et al. Smart investments in sustainable food productions: revisiting mixed crop–livestock systems. Science. 2010;327:822–825.

Hipfinger C, Laux M, Puschenreiter M. Comparison of four nickel hyperaccumulator species in the temperate climate zone of Central Europe. J Geochem Explor. 2022;234:106933. doi:10.1016/j.gexplo.2021.106933.

Hou XL, Han H, Tigabu M, et al. Lead contamination alters enzyme activities and microbial composition in the rhizosphere soil of the hyperaccumulator Pogonatherum crinitum. Ecotoxicol Environ Saf. 2021;207:111308. doi:10.1016/j.ecoenv.2020.111308.

Huang Y, Guan C, Liu Y, et al. Enhanced growth performance and salinity tolerance in transgenic switchgrass via overexpressing vacuolar Na⁺/H⁺ antiporter gene (PvNHX1). Front Plant Sci. 2017;8:1-13. doi:10.3389/fpls.2017.00871.

Jayakumar M, Surendran U, Raja P, et al. A review of heavy metals accumulation pathways, sources and management in soils. Arab J Geosci. 2021;14(20):2156. doi:10.1007/s12517-021-08147-z.

Jogawat A, Yadav B, Narayan OP. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. Physiol Plant. 2021;173(1):259-275. doi:10.1111/ppl.13464.

Kacar B, Katkat V. (2010). Bitki Besleme (5. baskı). Ankara: Nobel Yayın Dağıtım Tic. Ltd. Şti.

Kacar B, Katkat AV. Bitki Besleme. 2015. Bursa: Uludağ Üniversitesi Yayını.

Kadıoğlu B. Toprak kirliliği ile kimyasal gübre kullanımı arasındaki olası bağlantıların incelenmesi. Mus Alparslan Univ J Agric Nat. 2021;1(2):26-38.

Kafle A, Timilsina A, Gautam A, et al. Phytoremediation: Mechanisms, plant selection, and enhancement by natural and synthetic agents. Environ Adv. 2022;8:100203. doi:10.1016/j.envadv.2022.100203.

Karahan F, Ozyigit II, Saracoglu IA, et al. Heavy metal levels and mineral nutrient status in different parts of various medicinal plants collected from eastern Mediterranean region of Turkey. Biol Trace Elem Res. 2020;197(1):316-329. doi:10.1007/s12011-019-01992-2.

Karakas S. (2013). Farklı tuz seviyelerindeki topraklarda yetiştirilen domatesin gelişimi ve bazı fizyolojik özellikleri ile toprak iyileştirilmesi üzerine arkadaş bitkilerin etkileri [Doktora tezi]. Şanlıurfa: Harran Üniversitesi Fen Bilimleri Enstitüsü.

Karakas S, Çullu MA, Dıkılıtaş M. In vitro koşullarda halofit bitkilerden Salsola soda ve Portulaca oleraceanın NaCl stresine karşı çimlenme ve gelişim durumları. Harran Tarım Gıda Bilim Derg. 2015;19(2):66–74.

Karakas S, Çullu MA, Dikilitaş M. Comparison of two halophyte species (Salsola soda and Portulaca oleracea) for salt removal potential under different soil salinity conditions. Turk J Agric For. 2017;41:183–190.

Karakaş S, Dikilitaş M, Tıpırdamaz R. Biochemical and molecular tolerance of Carpobrotus acinaciformis L. halophyte plants exposed to high levels of NaCl stress. Harran Tarim Gida Bilim Derg. 2019;23(1):99-107.

Karakaş S, Dikilitaş M, Tıpırdamaz R. Phytoremediation of salt-affected soils using halophytes. In M. N. Grigore (Ed.), Handbook of Halophytes (pp.93-101). Cham: Springer. 2021. doi:10.1007/978-3-030-17854-3_42.

Koyro HW. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot. 2006;56(2):136–146.

Kyzioł-Komosińska J, Augustynowicz J, Lasek W, et al. Callitriche cophocarpa biomass as a potential low-cost biosorbent for trivalent chromium. J Environ Manag. 2018;214:295-304. doi:10.1016/j.jenvman.2018.03.033.

Langill T, Jorissen LP, Oleńska E, et al. Community profiling of seed endophytes from the Pb-Zn hyperaccumulator Noccaea caerulescens and their plant growth promotion potential. Plants. 2023;12(3):643. doi:10.3390/plants12030643.

Mırsal IA. Soil Pollution: Origin, Monitoring, and Remediation. 2004. Berlin: Springer-Verlag.

Mohseni R, Ghaderian SM, Schat H. Nickel uptake mechanisms in two Iranian nickel hyperaccumulators, Odontarrhena bracteata and Odontarrhena inflata. Plant Soil. 2019;434:263-269. doi:10.1007/s11104-018-3829-2.

Morsy M, Nossier M, Elsebaay AE, et al. Phytoremediation of Pb and Cd by alfalfa (Medicago sativa L.): An applied study in the presence of lettuce plants (Lactuca sativa L.). Arab Univ J Agric Sci. 2022;30(1):163-174. doi:10.21608/ajs.2022.130420.

Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–681.

Navarrete Gutierrez DM, Nkrumah PN, van Der Ent A, et al. The potential of Blepharidium guatemalense for nickel agromining in Mexico and Central America. Int J Phytoremediation. 2021;23(11):1157–1168.

O’Leary JW, Glenn EP, Watson MC. Agricultural production of halophytes irrigated with seawater. Plant Soil. 1985;89:311–321.

Özyiğit İİ, Baktibekova D, Hocaoglu-Özyiğit A, et al. The effects of cadmium on growth, some anatomical and physiological parameters of wheat (Triticum aestivum L.). Int J Life Sci Biotechnol. 2021;4(2):217-235. doi:10.38001/ijlsb.869629.

Paranjape K, Gowariker V, Krishnamurthy VN, Gowariker S. (2014). The Pesticide Encyclopedia. Wallingford, UK: CABI Publishing.

Parvaiz A, Satyawati S. Salt stress and phyto-biochemical responses of plants: A review. Plant Soil Environ. 2008;54(3):89-99. doi:10.17221/2774-PSE.

Pessarakli M, Szabolcs I. (1999). Soil salinity and sodicity as particular plant/crop stress factors. In M. Pessarakli (Ed.), Handbook of Plant and Crop Stress (pp. 1–16). New York: CRC Press, Taylor & Francis Group.

Reeves RD, Baker AJ, Jaffré T, et al. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 2018;218(2):407-411. doi:10.1111/nph.14907.

Seregin IV, Ivanova TV, Voronkov AS, et al. Zinc- and nickel-induced changes in fatty acid profiles in the zinc hyperaccumulator Arabidopsis halleri and non-accumulator Arabidopsis lyrata. Plant Physiol Biochem. 2023;197:107640. doi:10.1016/j.plaphy.2023.107640.

Sethi S. Phytochelatins: Heavy metal detoxifiers in plants. In A. K. Dubey, S. K. Srivastava, & R. K. Shukla (Eds.), Adv Innov Approaches Environ Biotechnol Ind Wastewater Treat (pp.361-379). Singapore: Springer Nature. 2023. doi:10.1007/978-981-99-0012-7_15.

Shoaib A, Javaid A. Oxidative stress in plants exposed to heavy metals. In M. Ashraf, M. Ozturk, & M. S. A. Ahmad (Eds.), Organic Solutes, Oxidative Stress, and Antioxidant Enzymes Under Abiotic Stressors (pp.133-152). Boca Raton: CRC Press. 2021.

Shrivastava P, Kumar R. Soil salinity: A serious environmental issue and plant growth-promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci. 2015;22:123-131. doi:10.1016/j.sjbs.2014.12.001.

Shukla S, Das S, Phutela S, et al. Heavy metal stress in plants: Causes, impact, and effective management. In R. K. Shukla, R. N. Yadav, & S. K. Srivastava (Eds.), Heavy Metal Toxicity: Human Health Impact and Mitigation Strategies (pp.187-215). Cham: Springer Nature. 2024. doi:10.1007/978-3-031-52667-7_10.

Simon MR, Cordo CA, Perello AE, et al. Influence of nitrogen supply on the susceptibility of wheat to Septoria tritici. J Phytopathol. 2003;151:283-289. doi:10.1046/j.1439-0434.2003.00722.x.

Sytar O, Ghosh S, Malinska H, et al. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiol Plant. 2021;173(1):148-166. doi:10.1111/ppl.13461.

Szurman-Zubrzycka M, Jędrzejek P, Szarejko I. How do plants cope with DNA damage? A concise review on the DDR pathway in plants. Int J Mol Sci. 2023;24(3):2404.

Şahin İK, Sezer CV, Ayhancı A. The effects of oxidative stress on cellular structures: Lipid peroxidation. In R. F. Öztürk & M. Dikilitaş (Eds.), Oxidative Stress and Antioxidant Defense Systems (p.15). Ankara: Akademisyen Kitabevi. 2024.

Tardío J, Pardo-De-Santayana M, Morales R. Ethnobotanical review of wild edible plants in Spain. Bot J Linn Soc. 2006;152(1):27–71.

Thakur R, Sarvade S, Dwivedi BS. Heavy metals: Soil contamination and its remediation. Agric Assoc Text Chem Crit Rev J. 2022;59-76.

Thijs S, Langill T, Vangronsveld J. The bacterial and fungal microbiota of hyperaccumulator plants: Small organisms, large influence. In J.-C. Kader & M. Delseny (Eds.), Adv Bot Res (Vol.83, pp.43-86). London: Academic Press. 2017. doi:10.1016/bs.abr.2016.12.004.

Ucer A, Uyanik A, Kutbay HG. Removal of heavy metals using Myriophyllum verticillatum (Whorl-Leaf Watermilfoil) in a hydroponic system. Ekoloji. 2013;22(87):1-8. doi:10.5053/ekoloji.2013.8701.

Ventura Y, Wuddineh WA, Myrzabayeva M, et al. Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci Hortic. 2011;128(3):189–196.

Wang YZ, Geng KR, Mo BL, et al. The nickel hyperaccumulator Odontarrhena chalcidica (Brassicaceae) preferentially takes up zinc over nickel. Plant Soil. 2024;489:1-12. doi:10.1007/s11104-023-06289-2.

Wilson C, Lesch SM, Grieve CM. Growth stage modulates salinity tolerance of New Zealand spinach (Tetragonia tetragonioides Pall.) and red orach (Atriplex hortensis L.). Ann Bot. 2000;85(4):501–509.

Yıldız Bİ, Karabağ K. İnsektisitlerin bal arısı davranışı ve fizyolojisi üzerine etkileri. Turk J Agric Food Sci Technol. 2021;9(5):863–867.

Zhang Q, Wang C. Natural and human factors affect the distribution of soil heavy metal pollution: A review. Water Air Soil Pollut. 2020;231(1):1-13. doi:10.1007/s11270-019-4349-z.

Zhang X, Zhang Y, Zhu D, et al. Chromium phytoextraction and physiological responses of the hyperaccumulator Leersia hexandra Swartz to plant growth-promoting rhizobacterium inoculation. Front Environ Sci Eng. 2023;17(1):9. doi:10.1007/s11783-022-1593-0.

Zurayk RA, Baalbaki R. Inula crithmoides: a candidate plant for saline agriculture. Arid Soil Res Rehabil. 1996;10(3):213–223.

Sayfalar

445-460

Yayınlanan

9 Aralık 2025

Lisans

Lisans